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BUILDING BLOCKS OF BAYESIAN INFERENCE

Generally (unless otherwise stated), in this course, we will use the
following notation. Let

 be the sample space;

 be the observed data;

 be the parameter space; and

 be the parameter of interest.

More to come later.
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FREQUENTIST INFERENCE

Given data , estimate the population parameter .

How to estimate  under the frequentist paradigm?

Maximum likelihood estimate (MLE)

Method of moments

and so on...

Frequentist ML estimation finds the one value of  that maximizes the
likelihood.

Typically uses large sample (asymptotic) theory to obtain confidence
intervals and do hypothesis testing.
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WHAT ARE BAYESIAN METHODS?
Bayesian methods are data analysis tools derived from the principles of
Bayesian inference and provide

parameter estimates with good statistical properties;

parsimonious descriptions of observed data;

predictions for missing data and forecasts of future data; and

a computational framework for model estimation, selection, and
validation.
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BAYES' THEOREM - BASIC CONDITIONAL

PROBABILITY

Let's take a step back and quickly review the basic form of Bayes'
theorem.

Suppose there are some events  and B having probabilities  and 
.

Bayes' rule gives the relationship between the marginal probabilities of A
and B and the conditional probabilities.

In particular, the basic form of Bayes' rule or Bayes' theorem is

 = marginal probability of event ,  = conditional
probability of event  given event , and so on.

A Pr(A)
Pr(B)

Pr(A|B) = =
Pr(A and B)

Pr(B)

Pr(B|A) Pr(A)

Pr(B)

Pr(A) A Pr(B|A)
B A
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BUILDING BLOCKS OF BAYESIAN INFERENCE

Now, to a slightly more complicated version of Bayes' rule. First,

1. For each , specify a prior distribution  or , describing
our beliefs about  being the true population parameter.

2. For each  and , specify a sampling distribution ,
describing our belief that the data we see  is the outcome of a
study with true parameter .  gets us the likelihood .

3. After observing the data , for each , update the prior
distribution to a posterior distribution  or , describing
our "updated" belief about  being the true population parameter.

Now, how do we get from Step 1 to 3? Bayes' rule!

We will use this over and over throughout the course!

θ ∈ Θ p(θ) π(θ)
θ

θ ∈ Θ y ∈ Y p(y|θ)
y

θ p(y|θ) L(θ|y)

y θ ∈ Θ
p(θ|y) π(θ|y)

θ

p(θ|y) = =
p(θ)p(y|θ)

∫Θ p(
~
θ)p(y|

~
θ)d

~
θ

p(θ)p(y|θ)

p(y)

6 / 13



NOTES ON PRIOR DISTRIBUTIONS

Many types of priors may be of interest. These may

represent our own beliefs;

represent beliefs of a variety of people with differing prior opinions; or

assign probability more or less evenly over a large region of the
parameter space.

and so on...
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NOTES ON PRIOR DISTRIBUTIONS

Subjective Bayes: a prior should accurately quantify some individual's
beliefs about .

Objective Bayes: the prior should be chosen to produce a procedure with
"good" operating characteristics without including subjective prior
knowledge.

Weakly informative: prior centered in a plausible region but not overly-
informative, as there is a tendency to be over confident about one's
beliefs.

θ
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NOTES ON PRIOR DISTRIBUTIONS

The prior quantifies your initial uncertainty in  before you observe new
data (new information) - this may be necessarily subjective & summarize
experience in a field or prior research.

Even if the prior is not "perfect", placing higher probability in a ballpark
of the truth leads to better performance.

Hence, it is very seldom the case that a weakly informative prior is not
preferred over no prior.

One (very important) role of the prior is to stabilize estimates in the
presence of limited data.

θ
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SIMPLE EXAMPLE - ESTIMATING A POPULATION

PROPORTION

Suppose  is the population proportion of individuals with
diabetes in the US.

A prior distribution for  would correspond to some distribution that
distributes probability across .

A very precise prior corresponding to abundant prior knowledge would be
concentrated tightly in a small sub-interval of .

A vague prior may be distributed widely across  - e.g., a uniform
distribution would be the common choice here.

θ ∈ (0, 1)

θ
(0, 1)

(0, 1)

(0, 1)
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SOME POSSIBLE PRIOR DENSITIES
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BETA PRIOR DENSITIES

These four priors correspond to  (also ), 
,  and  densities.

Beta(a,b) is a probability density function (pdf) on (0,1),

where  = beta function = normalizing constant ensuring the kernel
integrates to one. Note: some texts write  instead.

The beta(a,b) distribution has expectation  and the
density becomes more and more concentrated as  = prior "sample
size" increases.

The variance .

We will look more carefully into the beta-binomial model soon but first,
we will explore how this prior gets updated as data becomes available,
during the online discussion session.

Beta(1, 1) Unif(0, 1)
Beta(1, 10) Beta(2, 10) Beta(5, 50)

π(θ) = θa−1(1 − θ)b−1,
1

B(a, b)

B(a, b)
beta(α, β)

E[θ] = a/(a + b)
a + b

V[θ] = ab/[(a + b)2(a + b + 1)]
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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