STA 360/602L: MODULE 2.5

FREQUENTIST VS BAYESIAN INTERVALS

DR. OLANREWAJU MICHAEL AKANDE

FREQUENTIST CONFIDENCE INTERVALS

• Recall that a frequentist confidence interval [l(y), u(y)] has 95% frequentist coverage for a population parameter θ if, before we collect the data,

 $\Pr[l(y) < heta < u(y)| heta] = 0.95.$

- This means that 95% of the time, our constructed interval will cover the true parameter, and 5% of the time it won't.
- In any given sample, you don't know whether you're in the lucky 95% or the unlucky 5%.

FREQUENTIST CONFIDENCE INTERVALS

- You just know that either the interval covers the parameter, or it doesn't (useful, but not too helpful clearly).
- There is NOT a 95% chance your interval covers the true parameter once you have collected the data.
- Asking about the definition of a confidence interval is tricky, even for those who know what they're doing.

BAYESIAN INTERVALS

- An interval $[l(y), \ u(y)]$ has 95% Bayesian coverage for heta if

 $\Pr[l(y) < \theta < u(y)|Y=y] = 0.95.$

- This describes our information about where θ lies *after* we observe the data.
- Fantastic!
- This is actually the interpretation people want to give to the frequentist confidence interval.
- Bayesian interval estimates are often generally called credible intervals.

BAYESIAN QUANTILE-BASED INTERVAL

- The easiest way to obtain a Bayesian interval estimate is to use posterior quantiles.
- Easy since we either know the posterior densities exactly or can sample from the distributions.
- To make a $100 \times (1 \alpha)$ quantile-based credible interval, find numbers (quantiles) $\theta_{\alpha/2} < \theta_{1-\alpha/2}$ such that

1.
$$\Pr(heta < heta_{lpha/2} | Y = y) = rac{lpha}{2};$$
 and

2.
$$\Pr(heta > heta_{1-lpha/2}|Y=y) = rac{lpha}{2}.$$

This is an equal-tailed interval. Often when researchers refer to a credible interval, this is what they mean.

EQUAL-TAILED QUANTILE-BASED INTERVAL

- This is Figure 3.6 from the Hoff book. Focus on the quantile-based credible interval for now.
- Note that there are values of θ outside the quantile-based credible interval, with higher density than some values inside the interval.

HPD REGION

- A $100 \times (1-\alpha)$ highest posterior density (HPD) region is a subset s(y) of the parameter space Θ such that

1. $\Pr(heta \in s(y) | Y = y) = 1 - lpha$; and

2. If $heta_a \in s(y)$ and $heta_b
ot \in s(y)$, then $p(heta_a | Y = y) > p(heta_b | Y = y)$.

 All points in a HPD region have higher posterior density than points outside the region.

Note this region is not necessarily a single interval (e.g., in the case of a multimodal posterior).

- The basic idea is to gradually move a horizontal line down across the density, including in the HPD region all values of θ with a density above the horizontal line.
- Stop moving the line down when the posterior probability of the values of θ in the region reaches 1α .

HPD REGION

Hoff Figure 3.6 shows how to construct an HPD region.

WHAT'S NEXT?

Move on to the readings for the next module!

