STA 360/602L: MODULE 3.1

Monte $C_{\mbox{\scriptsize Carlo}}$ approximation and sampling

DR. OLANREWAJU MICHAEL AKANDE

- Monte Carlo integration is very key for Bayesian computation and using simulations in general.
- While we will focus on using Monte Carlo integration for Bayesian inference, the development is general and applies to any pdf/pmf $p(\theta)$.
- For our purposes, we will want to evaluate expectations of the form

$$H=\int h(heta)\cdot p(heta)d heta,$$

for many different functions h(.) (usually scalar for us).

Monte Carlo Approximation

- Procedure:
 - 1. Generate a random sample $\theta_1, \ldots, \theta_m \overset{ind}{\sim} p(\theta)$.
 - 2. Estimate H using

$$ar{h} = rac{1}{m}\sum_{i=1}^m h(heta_i).$$

• In this course, $p(\theta)$ would often be the posterior distribution $\pi(\theta|y)$.

- We have $\mathbb{E}[h(heta_i)] = H.$
- Assuming $\mathbb{E}[h^2(\theta_i)] < \infty$, so that the variance of each $h(\theta_i)$ is finite, we have
 - 1. LLN: $\bar{h} \stackrel{a.s.}{\rightarrow} H$.
 - 2. CLT: $ar{h} H$ is is asymptotically normal, with asymptotic variance

$$rac{1}{m}\int (h(heta)-H)^2 p(heta)d heta,$$

which can be approximated by

$$v_m=rac{1}{m^2}\sum_{i=1}^m(h(heta_i)-ar{h})^2.$$

• $\sqrt{v_m}$ is often called the Monte Carlo standard error.

- That is, generally, taking large Monte Carlo sample sizes m (in the thousands or tens of thousands) can yield very precise, and cheaply computed, numerical approximations to mathematically difficult integrals.
- What this means for us: we can approximate just about any aspect of the posterior distribution with a large enough Monte Carlo sample.

• For samples $heta_1,\ldots, heta_m$ drawn iid from $\pi(heta|y)$, as $m o\infty$, we have

•
$$\bar{\theta} = \frac{1}{m} \sum_{i=1}^{m} \theta_i \to \mathbb{E}[\theta|y]$$

• $\hat{\sigma}_{\theta} = \frac{1}{m-1} \sum_{i=1}^{m} (\theta_i - \bar{\theta})^2 \to \mathbb{V}[\theta|y]$

•
$$rac{1}{m}\sum\limits_{i=1}^m \mathbb{1}[heta_i \leq c] = rac{\# heta_i \leq c}{m} o \Pr[heta \leq c|y]$$

 $[rac{lpha}{2}$ th percentile of $(heta_1, \ldots, heta_m), (1 - rac{lpha}{2})$ th percentile of $(heta_1, \ldots, heta_m)]$ ightarrow 100 imes (1 - lpha) quantile-based credible interval.

BACK TO BIRTH RATES

- Suppose we randomly sample two "new" women, one with degree and one without.
- To what extent do we expect the one without the degree to have more kids than the other, e.g. $\tilde{y}_1 > \tilde{y}_2 | y_{11}, \ldots, y_{1n_1}, y_{21}, \ldots, y_{2n_2}$?
- Using R,

```
set.seed(01222020)
a <- 2; b <- 1; #prior
n1 <- 111; sumy1 <- 217; n2 <- 44; sumy2 <- 66 #data
y1_pred <- rnbinom(100000,size=(a+sumy1),mu=(a+sumy1)/(b+n1))
y2_pred <- rnbinom(10000,size=(a+sumy2),mu=(a+sumy2)/(b+n2))
mean(y1_pred > y2_pred)
```

[1] 0.48218

mean(y1_pred == y2_pred)

[1] 0.21842

BACK TO BIRTH RATES

- That is, $\Pr(\tilde{y}_1 > \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}) \approx 0.48$ and $\Pr(\tilde{y}_1 = \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}) \approx 0.22.$
- Notice that strong evidence of difference between two populations does not really imply the difference in predictions is large.

- This general idea of using samples to "approximate" averages (expectations) is also useful when trying to approximate posterior predictive distributions.
- Quite often, we are able to sample from $p(y_i|\theta)$ and $\pi(\theta|\{y_i\})$ but not from $p(y_{n+1}|y_{1:n})$ directly.
- We can do so indirectly using the following Monte Carlo procedure:

$$egin{aligned} ext{sample} \ heta^{(1)} &\sim \pi(heta|\{y_i\}), \ ext{ then sample} \ y_{n+1}^{(1)} &\sim f(y_{n+1}| heta^{(1)}) \ ext{sample} \ heta^{(2)} &\sim \pi(heta|\{y_i\}), \ ext{ then sample} \ y_{n+1}^{(2)} &\sim f(y_{n+1}| heta^{(2)}) \ dots \ dots \ ext{sample} \ heta^{(m)} &\sim \pi(heta|\{y_i\}), \ ext{ then sample} \ y_{n+1}^{(m)} &\sim f(y_{n+1}| heta^{(m)}). \end{aligned}$$

- The sequence $\{(\theta, y_{n+1})^{(1)}, \ldots, (\theta, y_{n+1})^{(m)}\}$ constitutes m independent samples from the joint posterior of (θ, Y_{n+1}) .
- In fact, $\{y_{n+1}^{(1)}, \ldots, y_{n+1}^{(m)}\}$ are independent draws from the posterior predictive distribution we care about.

BACK TO BIRTH RATES

• Let's re-compute $\Pr(\tilde{y}_1 > \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2})$ and $\Pr(\tilde{y}_1 = \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2})$ using this method.

• Using R,

```
set.seed(01222020)
a <- 2; b <- 1; #prior
n1 <- 111; sumy1 <- 217; n2 <- 44; sumy2 <- 66 #data
theta1_pred <- rgamma(10000,219,112); theta2_pred <- rgamma(10000,68,45)
y1_pred <- rpois(10000,theta1_pred); y2_pred <- rpois(10000,theta2_pred)
mean(y1_pred > y2_pred)
```

[1] 0.4765

mean(y1_pred == y2_pred)

[1] 0.2167

• Again, $\Pr(\tilde{y}_1 > \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}) \approx 0.48$ and $\Pr(\tilde{y}_1 = \tilde{y}_2 | y_{11}, \dots, y_{1n_1}, y_{21}, \dots, y_{2n_2}) \approx 0.22.$

WHAT'S NEXT?

Move on to the readings for the next module!

