STA 360/602L: MODULE 3.2

REJECTION SAMPLING; **I**MPORTANCE SAMPLING

DR. OLANREWAJU MICHAEL AKANDE

REJECTION SAMPLING

- Rejection sampling and Importance sampling are one of the first steps into Monte Carlo analysis, in which simulated values from one distribution are used to explore another.
- Simulating from the "wrong distribution" can be incredibly useful as we will see in this module and also later in the course.
- Both are not used very often, but are still of practical interest in
 - fairly small problems, in terms of dimension,
 - in which the density of the distribution of interest can be easily evaluated, but when it is difficult to sample from directly, and
 - when it is relatively easy to identify and simulate from distributions that approximate the distribution of interest.
- Importance sampling and Rejection sampling use the same ideas, but the latter leads to exact corrections and so exact samples from the distribution of interest.

REJECTION SAMPLING

- Setup:
 - $p(\theta)$ is some density we are interested in sampling from;
 - $p(\theta)$ is tough to sample from but we are able to evaluate $p(\theta)$ as a function at any point; and
 - $g(\theta)$ is some proposal distribution or importance sampling distribution that is easier to sample from.
- Two key requirements:
 - $g(\theta)$ is easy to sample from; and
 - $g(\theta)$ is easy to evaluate at any point as is the case for $p(\theta)$.
- Usually, the context is one in which $g(\theta)$ has been derived as an analytic approximation to $p(\theta)$; and the closer the approximation, the more accurate the resulting Monte Carlo analysis will be.

REJECTION SAMPLING

- Procedure:
 - 1. Define w(heta) = p(heta)/g(heta).
 - 2. Assume that $w(\theta) = p(\theta)/g(\theta) < M$ for some constant M. If $g(\theta)$ represents a good approximation to $p(\theta)$, then M should not be too far from 1.
 - 3. Generate a *candidate* value $\theta \sim g(\theta)$ and **accept** with probability $w(\theta)/M$: if accepted, θ is a draw from $p(\theta)$; otherwise **reject** and try again. Equivalently, generate $u \sim U(0, 1)$ independently of θ . Then **accept** θ as a draw from $p(\theta)$ if, and only if, $u < w(\theta)/M$.
- For those interested, the proof that all accepted θ values are indeed from $p(\theta)$ is on the next slide. We will not spend time on it.
- Clearly, we need ${\cal M}$ for this to work. However, in the case of truncated densities, we actually have ${\cal M}.$

PROOF FOR SIMPLE ACCEPT/REJECT

- We need to show that all accepted θ values are indeed from $p(\theta)$. Equivalently, show that $f(\theta|u < w(\theta)/M) = p(\theta)$.
- By Bayes' theorem,

$$f(heta|u < w(heta)/M) = rac{\Pr(heta ext{ and } u < w(heta)/M)}{\Pr(u < w(heta)/M)} = rac{\Pr(u < w(heta)/M \mid heta)g(heta)}{\Pr(u < w(heta)/M)}.$$

But,

•
$$\Pr(u < w(heta)/M \mid heta) = w(heta)/M$$
 since $u \sim U(0,1)$, and

$$egin{aligned} & \Pr(u < w(heta)/M) = \int \Pr(u < w(heta)/M \mid heta) g(heta) d heta \ &= \int w(heta)/M g(heta) d heta = 1/M \int w(heta) g(heta) d heta = 1/M \int p(heta) d heta = 1/M. \end{aligned}$$

Therefore,

 $f(heta|u < w(heta)/M) = rac{\Pr(u < w(heta)/M \mid heta)g(heta)}{\Pr(u < w(heta)/M)} = rac{w(heta)/Mg(heta)}{1/M} = w(heta)g(heta) = p(heta).$

REJECTION SAMPLING FOR TRUNCATED DENSITIES

- The inverse CDF method works well for truncated densities but what happens when we can not or prefer not to write down the truncated CDF?
- Suppose we want to sample from $f_{[a,b]}(\theta)$, that is, a known pdf $f(\theta)$ truncated to [a,b].
 - Recall that $f_{[a,b]}(\theta) \propto f(\theta) \mathbb{1}[\theta \in [a,b]]$. Using the notation for rejection sampling, $p(\theta) = f_{[a,b]}(\theta)$ and $g(\theta) = f(\theta)$.
 - Set $1/M = \int_a^b f(\theta^*) d\theta^*$, so that M is the normalizing constant of the truncated density.
 - Then, $w(heta)=p(heta)/g(heta)=M1[heta\in[a,b]]\leq M$ as required.

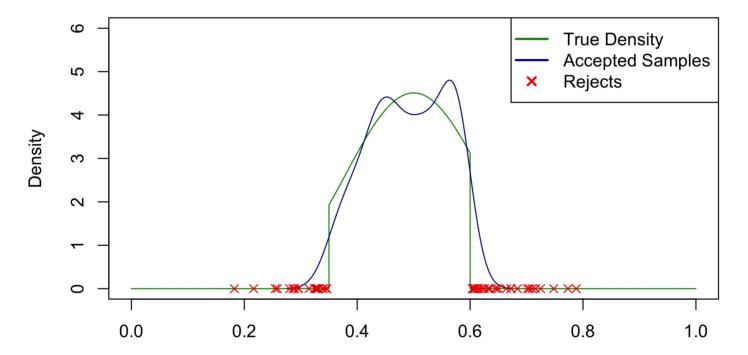
$R\!$ ejection sampling for truncated densities

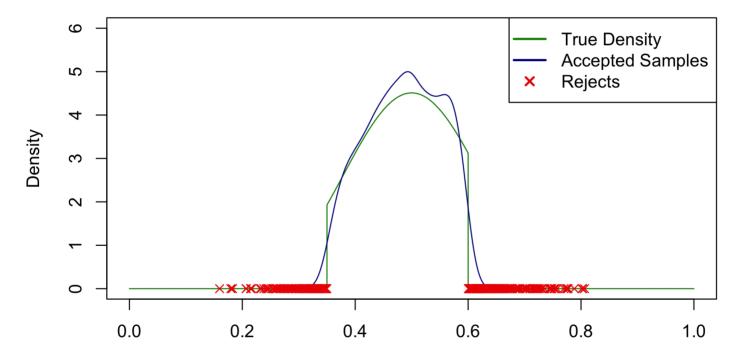
- We can then use the procedure on page 5 to generate the required samples.
- Specifically,
 - For each i = 1, ..., m, generate $\theta_i \sim f$. If $\theta_i \in [a, b]$, accept θ_i , otherwise **reject** and try again.
 - Easy to show that this is equivalent to accepting each θ_i with probability $w(\theta)/M.$

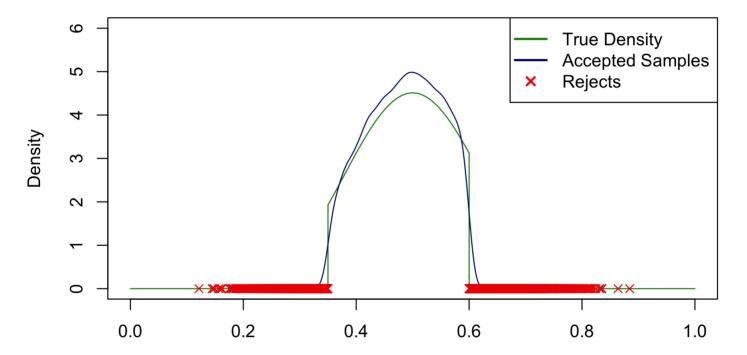
EXAMPLE

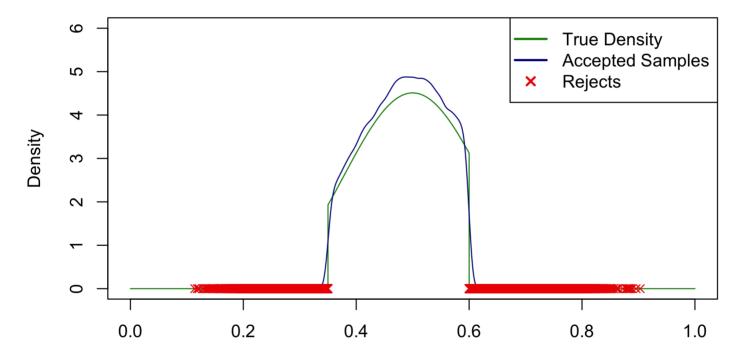
```
#Simple code for using rejection sampling to generate m samples
#from the Beta[10,10] density truncated to (0.35,0.6).
set.seed(12345)
#NOTE: there are more efficient ways to write this code!
#set sample size and reate vector to store sample
m < -10000; THETA < -rep(0,m)
#keep track of rejects
TotalRejects <- 0; Rejections <- NULL
#now the 'for loop'
for(i in 1:m){
 t <- 0
  while (t < 1)
    theta <- rbeta(1, 10, 10)
    if(theta > 0.35 & theta < 0.6){
     THETA[i] <- theta
     t <- 1
    } else {
   TotalRejects <- TotalRejects + 1
    Rejections <- rbind(Rejections,theta)</pre>
  }
#Overall acceptance rate:
1 - TotalRejects/(m+TotalRejects)
```

[1] 0.727802









COMMENTS

- Clearly less efficient than the inverse CDF method, which we already know how to use for this particular problem.
- When you can write down the truncated CDF, use the inverse CDF method instead.
- When you cannot, rejection sampling can be a possible alternative, as are many more sampling methods which we will not cover in this course.
- Anyway, generally, rejection sampling can still be very useful.
- Importance sampling is another related sampling method but we will not spend time on it. If you are interested, take a look at the next few slides. If not, feel free to skip.

OPTIONAL CONTENT FROM HERE ON...

Interest lies in expectations of the form (instead of the actual samples)

$$H=\int h(heta)p(heta)d heta,$$

Write

$$H=\int h(heta)w(heta)g(heta)d heta ~~{
m with}~~~w(heta)=p(heta)/g(heta)$$

that is, $\mathbb{E}[h(\theta)]$ under $p(\theta)$ is just $\mathbb{E}[h(\theta)w(\theta)]$ under $g(\theta).$

Using direct Monte Carlo integration

$$ar{h} = rac{1}{m}\sum_{i=1}^m w(heta_i)h(heta_i).$$

where $\theta_1, \ldots, \theta_m \stackrel{ind}{\sim} g(\theta)$. We are sampling from the "wrong" distribution.

- The measure of "how wrong" we are at each simulated θ_m value is the importance weight

 $w(heta_i) = p(heta_i)/g(heta_i).$

- These ratios weight the sample estimates $h(\theta_i)$ to "correct" for the fact that we sampled the wrong distribution.
- See Lopes & Gamerman (Ch 3.4) and Robert and Casella (Ch. 3.3) for discussions of convergence and optimality.
- Clearly, the closer g is to p, the better the results, just as we had with rejection sampling.

- Key considerations:
 - MC estimate h has the expectation H; and is generally almost surely convergent to H (under certain conditions of course but we will not dive into those).
 - $\mathbb{V}[\bar{h}]$ is often going to be finite in cases in which, generally, $w(\theta) = p(\theta)/g(\theta)$ is bounded and decays rapidly in the tails of $p(\theta)$
 - Thus, superior MC approximations, are achieved for choices of $g(\theta)$ whose tails dominate those of the target $p(\theta)$.
 - That is, importance sampling distributions should be chosen to have tails at least as fat as the target (think normal distribution vs tdistribution).
 - Obviously require the support of $g(\theta)$ to be the same as, or contain, that of $p(\theta)$.
- These also clearly apply to rejection sampling too.

- Problems in which $w(\theta) = p(\theta)/g(\theta)$ can be computed are actually rare.
- As you will see when we move away from conjugate distributions, we usually only know $p(\theta)$ up to a normalizing constant.
- When this is the case, simply "re-normalize" the importance weights, so that

$$ar{h} = rac{1}{m}\sum_{i=1}^m w_i h(heta_i) \hspace{1em} ext{where} \hspace{1em} w_i = rac{w(heta_i)}{\sum_{i=1}^m w(heta_i)}.$$

 Generally, in importance sampling, weights that are close to uniform are desirable, and very unevenly distributed weights are not.

WHAT'S NEXT?

Move on to the readings for the next module!

