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REJECTION SAMPLING

Rejection sampling and Importance sampling are one of the first steps
into Monte Carlo analysis, in which simulated values from one distribution
are used to explore another.

Simulating from the "wrong distribution" can be incredibly useful as we
will see in this module and also later in the course.

Both are not used very often, but are still of practical interest in

fairly small problems, in terms of dimension,

in which the density of the distribution of interest can be easily
evaluated, but when it is difficult to sample from directly, and

when it is relatively easy to identify and simulate from distributions
that approximate the distribution of interest.

Importance sampling and Rejection sampling use the same ideas, but the
latter leads to exact corrections and so exact samples from the
distribution of interest.
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REJECTION SAMPLING

Setup:

 is some density we are interested in sampling from;

 is tough to sample from but we are able to evaluate  as a
function at any point; and

 is some proposal distribution or importance sampling
distribution that is easier to sample from.

Two key requirements:

 is easy to sample from; and

 is easy to evaluate at any point as is the case for .

Usually, the context is one in which  has been derived as an analytic
approximation to ; and the closer the approximation, the more
accurate the resulting Monte Carlo analysis will be.
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REJECTION SAMPLING

Procedure:

1. Define .

2. Assume that  for some constant M. If 
represents a good approximation to , then M should not be too
far from 1.

3. Generate a candidate value  and accept with probability 
: if accepted,  is a draw from ; otherwise reject and

try again. 
Equivalently, generate  independently of . Then accept
 as a draw from  if, and only if, .

For those interested, the proof that all accepted  values are indeed
from  is on the next slide. We will not spend time on it.

Clearly, we need  for this to work. However, in the case of truncated
densities, we actually have .

w(θ) = p(θ)/g(θ)

w(θ) = p(θ)/g(θ) < M g(θ)
p(θ)

θ ∼ g(θ)
w(θ)/M θ p(θ)

u ∼ U(0, 1) θ

θ p(θ) u < w(θ)/M

θ
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M
M
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PROOF FOR SIMPLE ACCEPT/REJECT

We need to show that all accepted  values are indeed from .
Equivalently, show that .

By Bayes' theorem,

But,

 since , and

Therefore,

θ p(θ)
f(θ|u < w(θ)/M) = p(θ)

f(θ|u < w(θ)/M) = = .
Pr(θ and u < w(θ)/M)

Pr(u < w(θ)/M)

Pr(u < w(θ)/M  | θ)g(θ)

Pr(u < w(θ)/M)

Pr(u < w(θ)/M  | θ) = w(θ)/M u ∼ U(0, 1)

Pr(u < w(θ)/M) = ∫ Pr(u < w(θ)/M  | θ)g(θ)dθ

= ∫ w(θ)/Mg(θ)dθ = 1/M ∫ w(θ)g(θ)dθ = 1/M ∫ p(θ)dθ = 1/M.

f(θ|u < w(θ)/M) = = = w(θ)g(θ) = p(θ).
Pr(u < w(θ)/M  | θ)g(θ)

Pr(u < w(θ)/M)

w(θ)/Mg(θ)

1/M
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REJECTION SAMPLING FOR TRUNCATED DENSITIES

The inverse CDF method works well for truncated densities but what
happens when we can not or prefer not to write down the truncated CDF?

Suppose we want to sample from , that is, a known pdf 
truncated to .

Recall that . Using the notation for

rejection sampling,  and .

Set , so that  is the normalizing constant of
the truncated density.

Then,  as required.

f[a,b](θ) f(θ)
[a, b]

f[a,b](θ) ∝ f(θ)1[θ ∈ [a, b]]

p(θ) = f[a,b](θ) g(θ) = f(θ)

1/M = ∫ b

a
f(θ⋆)dθ⋆ M

w(θ) = p(θ)/g(θ) = M1[θ ∈ [a, b]] ≤ M
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REJECTION SAMPLING FOR TRUNCATED DENSITIES

We can then use the procedure on page 5 to generate the required
samples.

Specifically,

For each , generate . If , accept ,
otherwise reject and try again.

Easy to show that this is equivalent to accepting each  with
probability .

i = 1, … ,m θi ∼ f θi ∈ [a, b] θi

θi
w(θ)/M
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EXAMPLE

#Simple code for using rejection sampling to generate m samples
#from the Beta[10,10] density truncated to (0.35,0.6).
set.seed(12345)
#NOTE: there are more efficient ways to write this code!

#set sample size and reate vector to store sample
m <- 10000; THETA <- rep(0,m)
#keep track of rejects
TotalRejects <- 0; Rejections <- NULL
#now the 'for loop'
for(i in 1:m){
  t <- 0
  while(t < 1){
    theta <- rbeta(1,10,10)
    if(theta > 0.35 & theta < 0.6){
      THETA[i] <- theta
      t <- 1
    } else {
    TotalRejects <- TotalRejects + 1
    Rejections <- rbind(Rejections,theta)
  }
}
}
#Overall acceptance rate:
1 - TotalRejects/(m+TotalRejects)

## [1] 0.727802
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EXAMPLE

How does our sample compare to the true truncated density? m = 100
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EXAMPLE

How does our sample compare to the true truncated density? m = 1000
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EXAMPLE

How does our sample compare to the true truncated density? m = 10000
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EXAMPLE

How does our sample compare to the true truncated density? m = 100000
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COMMENTS

Clearly less efficient than the inverse CDF method, which we already
know how to use for this particular problem.

When you can write down the truncated CDF, use the inverse CDF method
instead.

When you cannot, rejection sampling can be a possible alternative, as are
many more sampling methods which we will not cover in this course.

Anyway, generally, rejection sampling can still be very useful.

Importance sampling is another related sampling method but we will not
spend time on it. If you are interested, take a look at the next few slides.
If not, feel free to skip.
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OPTIONAL CONTENT FROM HERE ON...
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IMPORTANCE SAMPLING

Interest lies in expectations of the form (instead of the actual samples)

Write

that is,  under  is just  under .

Using direct Monte Carlo integration

where . We are sampling from the "wrong"
distribution.

H = ∫ h(θ)p(θ)dθ,

H = ∫ h(θ)w(θ)g(θ)dθ   with   w(θ) = p(θ)/g(θ)

E[h(θ)] p(θ) E[h(θ)w(θ)] g(θ)

h̄ =
m

∑
i=1

w(θi)h(θi).
1

m

θ1, … , θm
ind
∼ g(θ)
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IMPORTANCE SAMPLING

The measure of "how wrong" we are at each simulated  value is the
importance weight

These ratios weight the sample estimates  to "correct" for the fact
that we sampled the wrong distribution.

See Lopes & Gamerman (Ch 3.4) and Robert and Casella (Ch. 3.3) for
discussions of convergence and optimality.

Clearly, the closer  is to , the better the results, just as we had with
rejection sampling.

θm

w(θi) = p(θi)/g(θi).

h(θi)

g p
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https://www.amazon.com/Markov-Chain-Monte-Carlo-Statistical/dp/1584885874
https://www.amazon.com/Monte-Statistical-Methods-Springer-Statistics/dp/1441919392


IMPORTANCE SAMPLING

Key considerations:

MC estimate  has the expectation ; and is generally almost surely
convergent to  (under certain conditions of course but we will not
dive into those).

 is often going to be finite in cases in which, generally, 
 is bounded and decays rapidly in the tails of 

.

Thus, superior MC approximations, are achieved for choices of 
whose tails dominate those of the target .

That is, importance sampling distributions should be chosen to have
tails at least as fat as the target (think normal distribution vs t-
distribution).

Obviously require the support of  to be the same as, or contain,
that of .

These also clearly apply to rejection sampling too.

h̄ H
H

V[h̄]
w(θ) = p(θ)/g(θ) p(θ)

g(θ)
p(θ)

g(θ)
p(θ)
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IMPORTANCE SAMPLING

Problems in which  can be computed are actually rare.

As you will see when we move away from conjugate distributions, we
usually only know  up to a normalizing constant.

When this is the case, simply "re-normalize" the importance weights, so
that

Generally, in importance sampling, weights that are close to uniform are
desirable, and very unevenly distributed weights are not.

w(θ) = p(θ)/g(θ)

p(θ)

h̄ =
m

∑
i=1

wih(θi)   where   wi = .
1

m

w(θi)

∑m

i=1 w(θi)
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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