STA 360/602L: MobuLE 3.6

NONINFORMATIVE AND IMPROPER PRIORS

DRrR. OLANREWAJU MICHAEL AKANDE

1712



NONINFORMATIVE AND IMPROPER PRIORS

= Generally, we must specify both o and 19 to do inference.

= When prior distributions have no population basis, that is, there is no
justification of the prior as "prior data”, prior distributions can be
difficult to construct.

= To that end, there is often the desire to construct noninformative priors,
with the rationale being "to let the data speak for themselves”.

= For example, we could instead assume a uniform prior on p that is
constant over the real line, i.e., m(u) o< 1 = all values on the real line

are equally likely apriori.

= Clearly, this is not a valid pdf since it will not integrate to 1 over the real
line. Such priors are known as improper priors.

= An improper prior can still be very useful, we just need to ensure it
results in a proper posterior.
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JEFFREYS PRIOR

Question: is there a prior pdf (for a given model) that would be
universally accepted as a noninformative prior?

= |Laplace proposed the uniform distribution. This proposal lacks invariance
under monotone transformations of the parameter.

= For example, a uniform prior on the binomial proportion parameter 0 is

60

not the same as a uniform prior on the odds parameter ¢ = ——

1-6°

= A more acceptable approach was introduced by Jeffreys. For single
parameter models, the Jeffreys' prior defines a noninformative prior

density of a parameter 6 as
() o< +/Z(6)

where Z(6) is the Fisher information for 6.
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JEFFREYS PRIOR

» The Fisher information gives a way to measure the amount of information
a random variable Y carries about an unknown parameter 6 of a
distribution that describes Y.

= Formally, Z(6) is defined as

7(6) =& [(%log p<y|0))2e] = [ (gtoerwe)) sas

= Alternatively,

1(6)=-E lg—;@logp(y\e)ﬂ = —/y (ga—;logp(y\é’)) p(y|0)dy.

= Turns out that the Jeffreys' prior for p under the normal model, when o?

is known, is
m(p) o< 1,

the uniform prior over the real line. Let's derive this on the board.




INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE USING JEFFREYS PRIOR

= Recall that for o2 known, the normal likelihood simplifies to
1 =22
o exp{ -3l - 02},
ignoring everything else that does not depend on .

= With the Jeffreys' prior 7m(p) o 1, can we derive the posterior
distribution?



INFERENCE FOR MEAN, CONDITIONAL ON
VARIANCE USING JEFFREYS PRIOR

= Posterior:
1
@Y. 7) o« exp {~grlu =) n(
X exp {—%Tn(,u — 5)2} .
= This is the kernel of a normal distribution with

= mean y, and
. . I
= precision 7 or variance = .
nT n

2
o
= Written differently, we have ,u]Y, o? ~ N(gv —)
n

= This should look familiar to you. Does it?




IMPROPER PRIOR

= |et's be very objective with the prior selection. In fact, let's be extreme!

= If we let the normal variance — oo then our prior on p is o< 1 (recall
the Jeffreys' prior on p for known o?).

= If we let the gamma variance get very large (e.g., a,b — 0), then
2 is o i

the prior on o
0'2

1
n W(u, 02) X — is improper (does not integrate to 1) but does lead to a
o

proper posterior distribution that yields inferences similar to frequentist
ones.

= For that choice, we have

/J’|YaT ~N (ga i)

nrt

_ —1)s?
7|Y ~ Gamma n_1 , (n—1)s
2 2




ANALYSIS WITH NONINFORMATIVE PRIORS

= Recall the Pygmalion data:

= Accelerated group (A): 20, 10, 19, 15, 9, 18.
= No growth group (N): 3, 2, 6, 10, 11, 5.

= Summary statistics:

= Yy, =15.2; 54 =4.71.
= yy = 6.2; sy = 3.65.

= S0 our joint posterior is

,U/A|YA,7'A ~ N(§A7 ! ) :N(152,L>

NATA 674
—1 (n4—1)§% 6—1 (6—1)(22.17
T4|Y4 ~ Gamma e , (4 — Vs, = Gamma , ( ) )
2 2 2 2
_ 1 1
pn|Yn, T ~ N(znv, ) :N(ﬁ,z,_)
NNTN 6TN
—1 (ny—1)s% 6—1 (6—1)(13.37
TNYNNGamma<nN2 , (ny 5 ) A) :Gamma( 5 ( )2( ))




MONTE CARLO SAMPLING

It is easy to sample from these posteriors:

aA <- (6-1)/2

aN <- (6-1)/2

bA <- (6-1)%22.17/2

bN <- (6-1)%13.37/2

muA <- 15.2

muN <- 6.2

tauA_postsample_impr <- rgamma(10000,aA,bA)

thetaA_postsample_impr <- rnorm(10000,muA,sqrt(l/(6*xtauA_postsample_impr)))
tauN_postsample_impr <- rgamma(10000,aN,bN)

thetaN_postsample_impr <- rnorm(10000,muN,sqrt(l/(6*tauN_postsample_impr)))
sigma2A_postsample_impr <- 1/tauA_postsample_impr

sigma2N_postsample_impr <- 1/tauN_postsample_impr
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MONTE CARLO SAMPLING

= |s the average improvement for the accelerated group larger than that
for the no growth group?

= What is Pr[pug > un|Ya, YN)?
mean (thetaA_postsample_impr > thetaN_postsample_impr)

## [1] 0.993

= |s the variance of improvement scores for the accelerated group larger
than that for the no growth group?

: 2 2
= What is Prjo% > 0% |Y4, Yn)?
mean (sigma2A_postsample_impr > sigma2N_postsample_impr)

## [1] 0.703

= How does the new choice of prior affect our conclusions?
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RECALL THE JOB TRAINING DATA

= Data:
= No training group (N): sample size ny = 429.
= Training group (T): sample size n4 = 185.

= Summary statistics for change in annual earnings:
=y = 1364.93; sy = 7460.05
= Yy = 4253.57; s = 8926.99

= Using the same approach we used for the Pygmalion data, answer the
questions of interest.




WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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