STA 360/602L: MODULE 4.2

MULTIVARIATE NORMAL MODEL II

DR. OLANREWAJU MICHAEL AKANDE

MULTIVARIATE NORMAL LIKELIHOOD RECAP

For data $\boldsymbol{Y_i} = (Y_{i1}, \dots, Y_{ip})^T \sim \mathcal{N}_p(\boldsymbol{\theta}, \Sigma)$, the likelihood is

$$
p(\boldsymbol{Y}|\boldsymbol{\theta}, \Sigma) \propto \left|\Sigma\right|^{-\frac{n}{2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{\theta})^T \Sigma^{-1} (\boldsymbol{y}_i - \boldsymbol{\theta})\right\}.
$$

For θ , it is convenient to write $p(Y|\theta, \Sigma)$ as

$$
p(\boldsymbol{Y}|\boldsymbol{\theta}, \Sigma) \propto \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T(n\Sigma^{-1})\boldsymbol{\theta} + \boldsymbol{\theta}^T(n\Sigma^{-1}\bar{\boldsymbol{y}})\right\},
$$

where $\bar{\mathbf{y}} = (\bar{y}_1, \dots, \bar{y}_p)^T$.

For Σ , it is convenient to write $p(Y|\theta, \Sigma)$ as

$$
p(\boldsymbol{Y}|\boldsymbol{\theta}, \Sigma) \propto \left| \Sigma \right|^{-\frac{n}{2}} \exp \left\{ -\frac{1}{2} \mathrm{tr} \left[\boldsymbol{S}_{\theta} \Sigma^{-1} \right] \right\},
$$

where $\mathcal{S}_{\theta} = \sum_{i=1}^{n} (\mathcal{y}_i - \theta)(\mathcal{y}_i - \theta)^T$ is the residual sum of squares matrix.

PRIOR FOR THE MEAN

- A convenient specification of the joint prior is $\pi(\theta, \Sigma) = \pi(\theta)\pi(\Sigma)$.
- As in the univariate case, a convenient prior distribution for θ is also normal (multivariate in this case).
- Assume that $\pi(\theta) = \mathcal{N}_p(\mu_0, \Lambda_0)$.
- The pdf will be easier to work with if we write it as

$$
\pi(\boldsymbol{\theta}) = (2\pi)^{-\frac{p}{2}} |\Lambda_0|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_0)^T \Lambda_0^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_0)\right\} \n\propto \exp \left\{-\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_0)^T \Lambda_0^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_0)\right\} \n= \exp \left\{-\frac{1}{2} \left[\boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\theta} - \boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\mu}_0 - \boldsymbol{\mu}_0^T \Lambda_0^{-1} \boldsymbol{\theta} + \underbrace{\boldsymbol{\mu}_0^T \Lambda_0^{-1} \boldsymbol{\mu}_0}_{\text{same term}}\right]\right\} \n\propto \exp \left\{-\frac{1}{2} \left[\boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\theta} - 2 \boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\mu}_0\right]\right\} \n= \exp \left\{-\frac{1}{2} \left[\boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\theta} - 2 \boldsymbol{\theta}^T \Lambda_0^{-1} \boldsymbol{\mu}_0\right]\right\}
$$

PRIOR FOR THE MEAN

 \blacksquare So we have

$$
\pi(\boldsymbol{\theta}) \propto \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\theta} + \boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\mu}_0\right\}.
$$

- **Key trick for combining with likelihood:** When the normal density is written in this form, note the following details in the exponent.
	- In the first part, the inverse of the *covariance matrix* Λ_0^{-1} is "sandwiched" between $\boldsymbol{\theta}^{T}$ and $\boldsymbol{\theta}.$
	- In the second part, the θ in the first part is replaced (sort of) with the *mean* μ_0 , with Λ_0^{-1} keeping its place.
- The two points above will help us identify **updated means** and **updated covariance matrices** relatively quickly.

CONDITIONAL POSTERIOR FOR THE MEAN

Our conditional posterior (full conditional) $\theta|\Sigma, Y$, is then

$$
\pi(\boldsymbol{\theta}|\Sigma,\boldsymbol{Y})\propto p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma)\cdot\pi(\boldsymbol{\theta})\\ \propto\underbrace{\exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T(n\Sigma^{-1})\boldsymbol{\theta}+\boldsymbol{\theta}^T(n\Sigma^{-1}\bar{\boldsymbol{y}})\right\}}_{p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma)}\cdot\underbrace{\exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\theta}+\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\mu}_0\right\}}_{\pi(\boldsymbol{\theta})}\\=\exp\left\{\underbrace{-\frac{1}{2}\boldsymbol{\theta}^T(n\Sigma^{-1})\boldsymbol{\theta}-\frac{1}{2}\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\theta}}_{\text{First parts from }p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma)\text{ and }\pi(\boldsymbol{\theta})}+\underbrace{\boldsymbol{\theta}^T(n\Sigma^{-1}\bar{\boldsymbol{y}})+\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\mu}_0}_{\text{Second parts from }p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma)\text{ and }\pi(\boldsymbol{\theta})}\right\}\\ =\exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T\left[n\Sigma^{-1}+\Lambda_0^{-1}\right]\boldsymbol{\theta}+\boldsymbol{\theta}^T\left[n\Sigma^{-1}\bar{\boldsymbol{y}}+\Lambda_0^{-1}\boldsymbol{\mu}_0\right]\right\},
$$

which is just another multivariate normal distribution.

CONDITIONAL POSTERIOR FOR THE MEAN

To confirm the normal density and its parameters, compare to the prior kernel

$$
\pi(\boldsymbol{\theta}) \propto \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\theta} + \boldsymbol{\theta}^T\Lambda_0^{-1}\boldsymbol{\mu}_0\right\}
$$

and the posterior kernel we just derived, that is,

$$
\pi(\boldsymbol\theta|\Sigma,\boldsymbol Y)\propto\exp\left\{-\frac{1}{2}\boldsymbol\theta^T\left[\Lambda_0^{-1}+n\Sigma^{-1}\right]\boldsymbol\theta+\boldsymbol\theta^T\left[\Lambda_0^{-1}\boldsymbol\mu_0+n\Sigma^{-1}\bar{\boldsymbol y}\right]\right\}.
$$

Easy to see (relatively) that $\boldsymbol{\theta}|\Sigma,\boldsymbol{Y}\sim \mathcal{N}_p(\boldsymbol{\mu}_n,\Lambda_n)$, with

$$
\Lambda_n = \left[\Lambda_0^{-1} + n\Sigma^{-1} \right]^{-1}
$$

and

$$
\boldsymbol{\mu}_n = \Lambda_n \left[\Lambda_0^{-1} \boldsymbol{\mu}_0 + n \Sigma^{-1} \bar{\boldsymbol{y}} \right]
$$

BAYESIAN INFERENCE

- As in the univariate case, we once again have that
	- **Posterior precision is sum of prior precision and data precision:**

 Λ_n^{-1} $\lambda_n^{-1} = \Lambda_0^{-1} + n\Sigma^{-1}$

Posterior expectation is weighted average of prior expectation and the sample mean:

EX Compare these to the results from the univariate case to gain more intuition.

WHAT ABOUT THE COVARIANCE MATRIX?

- In the univariate case with $y_i \sim \mathcal{N}(\mu, \sigma^2)$, the common choice for the prior is an inverse-gamma distribution for the variance σ^2 .
- As we have seen, we can rewrite as $y_i \sim \mathcal{N}(\mu, \tau^{-1})$, so that we have a gamma prior for the precision τ .
- In the multivariate normal case, we have a covariance matrix Σ instead of a scalar.
- Appealing to have a matrix-valued extension of the inverse-gamma (and gamma) that would be conjugate.
- One complication is that the covariance matrix Σ must be positive **definite and symmetric**.

POSITIVE DEFINITE AND SYMMETRIC

- "Positive definite" means that for all $x \in \mathcal{R}^p$, $x^T \Sigma x > 0$.
- Basically ensures that the diagonal elements of Σ (corresponding to the marginal variances) are positive.
- Also, ensures that the correlation coefficients for each pair of variables are between -1 and 1.
- Our prior for Σ should thus assign probability one to set of positive definite matrices.
- Analogous to the univariate case, the inverse-Wishart distribution is the corresponding conditionally conjugate prior for Σ (multivariate generalization of the inverse-gamma).
- The textbook covers the construction of Wishart and inverse-Wishart random variables. We will skip the actual development in class but will write code to sample random variates.

INVERSE-WISHART DISTRIBUTION

A random variable $\Sigma \sim \mathrm{IW}_p(\nu_0,\boldsymbol{S}_0)$, where Σ is positive definite and $p\times p$, has pdf

$$
p(\Sigma) \; \propto \; \left|\Sigma\right|^{\frac{-(\nu_0+p+1)}{2}} \mathrm{exp}\left\{-\frac{1}{2}\mathrm{tr}(\boldsymbol{S}_0\Sigma^{-1})\right\},
$$

where

- $\nu_0 > p 1$ is the "degrees of freedom", and
- S_0 is a $p \times p$ positive definite matrix.
- For this distribution, $\mathbb{E}[\Sigma] = \frac{1}{n(n-1)} S_0$, for $\nu_0 > p+1$. $\frac{1}{\nu_0 - p - 1}$ $\nu_0 > p + 1$
- Hence, S_0 is the scaled mean of the $\text{IW}_p(\nu_0, \mathcal{S}_0)$.

INVERSE-WISHART DISTRIBUTION

- If we are very confident in a prior guess Σ_0 , for Σ , then we might set
	- ν_0 , the degrees of freedom to be very large, and
	- $S_0 = (\nu_0 p 1) \Sigma_0$.

In this case, $\mathbb{E}[\Sigma] = \frac{1}{n-1} S_0 = \frac{1}{n-1} (\nu_0 - p - 1) \Sigma_0 = \Sigma_0$, and Σ is tightly (depending on the value of ν_0) centered around Σ_0 . $\frac{1}{\nu_0 - p - 1}$ $\frac{1}{\nu_0 - p - 1}$ Σ

If we are not at all confident but we still have a prior guess Σ_0 , we might set

$$
\bullet
$$
 $\nu_0 = p + 2$, so that the $\mathbb{E}[\Sigma] = \frac{1}{\nu_0 - p - 1} \mathbf{S}_0$ is finite.

$$
\blacksquare \ \ \pmb{S}_0 = \Sigma_0
$$

Here, $\mathbb{E}[\Sigma] = \Sigma_0$ as before, but Σ is only loosely centered around Σ_0 .

WISHART DISTRIBUTION

- Just as we had with the gamma and inverse-gamma relationship in the univariate case, we can also work in terms of the Wishart distribution (multivariate generalization of the gamma) instead.
- The Wishart distribution provides a conditionally-conjugate prior for the precision matrix Σ^{-1} in a multivariate normal model.
- Specifically, if $\Sigma \sim \mathrm{IW}_p(\nu_0,\bm{S}_0)$, then $\Phi = \Sigma^{-1} \sim \mathrm{W}_p(\nu_0,\bm{S}_0^{-1})$.
- A random variable $\Phi \sim W_p(\nu_0, \mathcal{S}_0^{-1}),$ where Φ has dimension $(p \times p),$ has pdf

$$
f(\Phi) \; \propto \; |\Phi|^{\frac{\nu_0-p-1}{2}} {\rm exp}\left\{-\frac{1}{2}{\rm tr}(\boldsymbol{S}_0\Phi)\right\}.
$$

- Here, $\mathbb{E}[\Phi] = \nu_0 \mathbf{S}_0$.
- Note that the textbook writes the inverse-Wishart as $\text{IW}_p(\nu_0, \mathcal{S}_0^{-1})$. I prefer I $\mathrm{W}_p(\nu_0,S_0)$ instead. Feel free to use either notation but try not to get confused.

CONDITIONAL POSTERIOR FOR COVARIANCE

Assuming $\pi(\Sigma) = \text{IW}_p(\nu_0, \mathcal{S}_0)$, the conditional posterior (full conditional) $\Sigma|\theta, Y$, is then

$$
\begin{aligned} \pi(\Sigma|\boldsymbol{\theta},\boldsymbol{Y}) &\propto p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma)\cdot\pi(\Sigma) \\ &\propto |\Sigma|^{-\frac{n}{2}}\exp\left\{-\frac{1}{2}\mathrm{tr}\left[\boldsymbol{S}_{\theta}\Sigma^{-1}\right]\right\}\cdot\left|\Sigma\right|^{-\frac{(\nu_{0}+p+1)}{2}}\exp\left\{-\frac{1}{2}\mathrm{tr}(\boldsymbol{S}_{0}\Sigma^{-1})\right\} \\ &\propto |\Sigma|^{\frac{-(\nu_{0}+p+n+1)}{2}}\exp\left\{-\frac{1}{2}\mathrm{tr}\left[\boldsymbol{S}_{0}\Sigma^{-1}+\boldsymbol{S}_{\theta}\Sigma^{-1}\right]\right\}, \\ &\propto |\Sigma|^{\frac{-(\nu_{0}+n+p+1)}{2}}\exp\left\{-\frac{1}{2}\mathrm{tr}\left[(\boldsymbol{S}_{0}+\boldsymbol{S}_{\theta})\,\Sigma^{-1}\right]\right\}, \end{aligned}
$$

which is I $W_p(\nu_n, \mathcal{S}_n)$, or using the notation in the book, $\text{IW}_p(\nu_n,\mathcal{S}_n^{-1}),$ with $\binom{n-1}{n}$

$$
\blacksquare \ \nu_n = \nu_0 + n, \text{ and }
$$

 \bullet $S_n = [S_0 + S_\theta]$

CONDITIONAL POSTERIOR FOR COVARIANCE

- We once again see that the "posterior sample size" or "posterior degrees of freedom" ν_n is the sum of the "prior degrees of freedom" ν_0 and the data sample size n .
- S_n can be thought of as the "posterior sum of squares", which is the sum of "prior sum of squares" plus "sample sum of squares".
- Recall that if $\Sigma \sim \text{IW}_p(\nu_0, S_0)$, then $\mathbb{E}[\Sigma] = \frac{1}{\nu_0 + \nu_0} S_0$. $\frac{1}{\nu_0 - p - 1}$
- \Rightarrow the conditional posterior expectation of the population covariance is

$$
\begin{aligned} \mathbb{E}[\Sigma | \bm{\theta}, \bm{Y}] &= \frac{1}{\nu_0 + n - p - 1} [\bm{S}_0 + \bm{S}_\theta] \\ &= \frac{\nu_0 - p - 1}{\nu_0 + n - p - 1} \left[\frac{1}{\nu_0 - p - 1} \bm{S}_0 \right] + \frac{n}{\nu_0 + n - p - 1} \left[\frac{1}{n} \bm{S}_\theta \right] \;, \\ & \text{weight on prior expectation} \end{aligned}
$$

which is a weighted average of prior expectation and sample estimate.

WHAT' S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

