STA 360/602L: Module 4.2

MULTIVARIATE NORMAL MODEL II

DR. OLANREWAJU MICHAEL AKANDE

MULTIVARIATE NORMAL LIKELIHOOD RECAP

lacksquare For data $m{Y}_i = (Y_{i1}, \dots, Y_{ip})^T \sim \mathcal{N}_p(m{ heta}, \Sigma)$, the likelihood is

$$p(m{Y}|m{ heta},\Sigma) \propto |\Sigma|^{-rac{n}{2}} \exp\left\{-rac{1}{2}\sum_{i=1}^n (m{y}_i-m{ heta})^T\Sigma^{-1}(m{y}_i-m{ heta})
ight\}.$$

■ For θ , it is convenient to write $p(Y|\theta, \Sigma)$ as

$$p(m{Y}|m{ heta}, \Sigma) \propto \exp\left\{-rac{1}{2}m{ heta}^T(n\Sigma^{-1})m{ heta} + m{ heta}^T(n\Sigma^{-1}ar{m{y}})
ight\},$$

where $\bar{\boldsymbol{y}}=(\bar{y}_1,\ldots,\bar{y}_p)^T$.

■ For Σ , it is convenient to write $p(Y|\theta, \Sigma)$ as

$$p(m{Y}|m{ heta},\Sigma) \propto \left|\Sigma
ight|^{-rac{n}{2}} \exp\left\{-rac{1}{2} ext{tr}\left[m{S}_{ heta}\Sigma^{-1}
ight]
ight\},$$

where $S_{\theta} = \sum_{i=1}^{n} (y_i - \theta)(y_i - \theta)^T$ is the residual sum of squares matrix.

PRIOR FOR THE MEAN

- A convenient specification of the joint prior is $\pi(\theta, \Sigma) = \pi(\theta)\pi(\Sigma)$.
- As in the univariate case, a convenient prior distribution for θ is also normal (multivariate in this case).
- Assume that $\pi(\boldsymbol{\theta}) = \mathcal{N}_p(\boldsymbol{\mu}_0, \Lambda_0)$.
- The pdf will be easier to work with if we write it as

$$egin{aligned} \pi(oldsymbol{ heta}) &= (2\pi)^{-rac{p}{2}} |\Lambda_0|^{-rac{1}{2}} \exp\left\{-rac{1}{2}(oldsymbol{ heta} - oldsymbol{\mu}_0)^T \Lambda_0^{-1}(oldsymbol{ heta} - oldsymbol{\mu}_0)
ight\} \ &\propto \exp\left\{-rac{1}{2} \left[oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} - oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0 - oldsymbol{\mu}_0^T \Lambda_0^{-1} oldsymbol{ heta} + oldsymbol{ heta}_0^T \Lambda_0^{-1} oldsymbol{\mu}_0
ight]
ight\} \ &\propto \exp\left\{-rac{1}{2} \left[oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} - 2oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0
ight]
ight\} \ &= \exp\left\{-rac{1}{2} oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{ heta} + oldsymbol{ heta}^T \Lambda_0^{-1} oldsymbol{\mu}_0
ight\} \end{aligned}$$

PRIOR FOR THE MEAN

So we have

$$\pi(oldsymbol{ heta}) \propto \exp\left\{-rac{1}{2}oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{ heta} + oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{\mu}_0
ight\}.$$

- **Key trick for combining with likelihood:** When the normal density is written in this form, note the following details in the exponent.
 - In the first part, the inverse of the *covariance matrix* Λ_0^{-1} is "sandwiched" between θ^T and θ .
 - In the second part, the θ in the first part is replaced (sort of) with the mean μ_0 , with Λ_0^{-1} keeping its place.
- The two points above will help us identify updated means and updated covariance matrices relatively quickly.

CONDITIONAL POSTERIOR FOR THE MEAN

• Our conditional posterior (full conditional) $\theta|\Sigma, Y$, is then

$$\pi(\boldsymbol{\theta}|\Sigma, \boldsymbol{Y}) \propto p(\boldsymbol{Y}|\boldsymbol{\theta}, \Sigma) \cdot \pi(\boldsymbol{\theta})$$

$$\propto \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}(n\Sigma^{-1})\boldsymbol{\theta} + \boldsymbol{\theta}^{T}(n\Sigma^{-1}\bar{\boldsymbol{y}})\right\} \cdot \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\theta} + \boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\mu}_{0}\right\}$$

$$= \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}(n\Sigma^{-1})\boldsymbol{\theta} - \frac{1}{2}\boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\theta} + \underbrace{\boldsymbol{\theta}^{T}(n\Sigma^{-1}\bar{\boldsymbol{y}}) + \boldsymbol{\theta}^{T}\Lambda_{0}^{-1}\boldsymbol{\mu}_{0}}_{\text{Second parts from }p(\boldsymbol{Y}|\boldsymbol{\theta},\Sigma) \text{ and }\pi(\boldsymbol{\theta})}\right\}$$

$$= \exp\left\{-\frac{1}{2}\boldsymbol{\theta}^{T}\left[n\Sigma^{-1} + \Lambda_{0}^{-1}\right]\boldsymbol{\theta} + \boldsymbol{\theta}^{T}\left[n\Sigma^{-1}\bar{\boldsymbol{y}} + \Lambda_{0}^{-1}\boldsymbol{\mu}_{0}\right]\right\},$$

which is just another multivariate normal distribution.

CONDITIONAL POSTERIOR FOR THE MEAN

 To confirm the normal density and its parameters, compare to the prior kernel

$$\pi(oldsymbol{ heta}) \propto \exp\left\{-rac{1}{2}oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{ heta} + oldsymbol{ heta}^T\Lambda_0^{-1}oldsymbol{\mu}_0
ight\}$$

and the posterior kernel we just derived, that is,

$$\pi(m{ heta}|\Sigma,m{Y}) \propto \exp\left\{-rac{1}{2}m{ heta}^T\left[\Lambda_0^{-1} + n\Sigma^{-1}
ight]m{ heta} + m{ heta}^T\left[\Lambda_0^{-1}m{\mu}_0 + n\Sigma^{-1}ar{m{y}}
ight]
ight\}.$$

■ Easy to see (relatively) that $\theta|\Sigma, Y \sim \mathcal{N}_p(\mu_n, \Lambda_n)$, with

$$\Lambda_n = \left[\Lambda_0^{-1} + n\Sigma^{-1}
ight]^{-1}$$

and

$$oldsymbol{\mu}_n = \Lambda_n \left[\Lambda_0^{-1} oldsymbol{\mu}_0 + n \Sigma^{-1} ar{oldsymbol{y}}
ight]$$

BAYESIAN INFERENCE

- As in the univariate case, we once again have that
 - Posterior precision is sum of prior precision and data precision:

$$\Lambda_n^{-1} = \Lambda_0^{-1} + n\Sigma^{-1}$$

Posterior expectation is weighted average of prior expectation and the sample mean:

$$m{\mu}_n = \Lambda_n \left[\Lambda_0^{-1} m{\mu}_0 + n \Sigma^{-1} ar{m{y}}
ight]$$
 $= \overbrace{\left[\Lambda_n \Lambda_0^{-1}
ight]}^{ ext{weight on prior mean}} m{\mu}_0 + \overbrace{\left[\Lambda_n (n \Sigma^{-1})
ight]}^{ ext{$m{v}$}} ar{m{y}}_{ ext{sample mean}}$

 Compare these to the results from the univariate case to gain more intuition.

WHAT ABOUT THE COVARIANCE MATRIX?

- In the univariate case with $y_i \sim \mathcal{N}(\mu, \sigma^2)$, the common choice for the prior is an inverse-gamma distribution for the variance σ^2 .
- As we have seen, we can rewrite as $y_i \sim \mathcal{N}(\mu, \tau^{-1})$, so that we have a gamma prior for the precision τ .
- In the multivariate normal case, we have a covariance matrix Σ instead of a scalar.
- Appealing to have a matrix-valued extension of the inverse-gamma (and gamma) that would be conjugate.
- One complication is that the covariance matrix Σ must be **positive** definite and symmetric.

Positive definite and symmetric

- "Positive definite" means that for all $x \in \mathcal{R}^p$, $x^T \Sigma x > 0$.
- Basically ensures that the diagonal elements of Σ (corresponding to the marginal variances) are positive.
- Also, ensures that the correlation coefficients for each pair of variables are between -1 and 1.
- Our prior for Σ should thus assign probability one to set of positive definite matrices.
- Analogous to the univariate case, the inverse-Wishart distribution is the corresponding conditionally conjugate prior for Σ (multivariate generalization of the inverse-gamma).
- The textbook covers the construction of Wishart and inverse-Wishart random variables. We will skip the actual development in class but will write code to sample random variates.

INVERSE-WISHART DISTRIBUTION

■ A random variable $\Sigma \sim \mathrm{IW}_p(\nu_0, S_0)$, where Σ is positive definite and $p \times p$, has pdf

$$p(\Sigma) \, \propto \, |\Sigma|^{rac{-(
u_0+p+1)}{2}} {
m exp} \left\{ -rac{1}{2} {
m tr}(oldsymbol{S}_0 \Sigma^{-1})
ight\},$$

where

- $\nu_0 > p-1$ is the "degrees of freedom", and
- S_0 is a $p \times p$ positive definite matrix.
- $lacksquare ext{For this distribution, } \mathbb{E}[\Sigma] = rac{1}{
 u_0 p 1} oldsymbol{S}_0 ext{, for }
 u_0 > p + 1.$
- Hence, S_0 is the scaled mean of the $\mathrm{IW}_p(\nu_0, S_0)$.

INVERSE-WISHART DISTRIBUTION

- If we are very confident in a prior guess Σ_0 , for Σ , then we might set
 - ν_0 , the degrees of freedom to be very large, and
 - $S_0 = (\nu_0 p 1)\Sigma_0$.

In this case, $\mathbb{E}[\Sigma]=\frac{1}{\nu_0-p-1}S_0=\frac{1}{\nu_0-p-1}(\nu_0-p-1)\Sigma_0=\Sigma_0$, and Σ is tightly (depending on the value of ν_0) centered around Σ_0 .

- If we are not at all confident but we still have a prior guess Σ_0 , we might set
 - $lacksquare
 u_0=p+2$, so that the $\mathbb{E}[\Sigma]=rac{1}{
 u_0-p-1}S_0$ is finite.
 - lacksquare $oldsymbol{S}_0=\Sigma_0$

Here, $\mathbb{E}[\Sigma] = \Sigma_0$ as before, but Σ is only loosely centered around Σ_0 .

WISHART DISTRIBUTION

- Just as we had with the gamma and inverse-gamma relationship in the univariate case, we can also work in terms of the Wishart distribution (multivariate generalization of the gamma) instead.
- The Wishart distribution provides a conditionally-conjugate prior for the precision matrix Σ^{-1} in a multivariate normal model.
- lacksquare Specifically, if $\Sigma \sim \mathrm{IW}_p(
 u_0, S_0)$, then $\Phi = \Sigma^{-1} \sim \mathrm{W}_p(
 u_0, S_0^{-1})$.
- lacksquare A random variable $\Phi \sim \mathrm{W}_p(
 u_0, oldsymbol{S}_0^{-1})$, where Φ has dimension (p imes p), has pdf

$$f(\Phi) \, \propto \, |\Phi|^{rac{
u_0-p-1}{2}} {
m exp} \left\{ -rac{1}{2} {
m tr}(m{S}_0\Phi)
ight\}.$$

- lacksquare Here, $\mathbb{E}[\Phi] =
 u_0 S_0$.
- Note that the textbook writes the inverse-Wishart as $\mathrm{IW}_p(\nu_0, \mathbf{S}_0^{-1})$. I prefer $\mathrm{IW}_p(\nu_0, \mathbf{S}_0)$ instead. Feel free to use either notation but try not to get confused.

CONDITIONAL POSTERIOR FOR COVARIANCE

■ Assuming $\pi(\Sigma) = \mathrm{IW}_p(\nu_0, S_0)$, the conditional posterior (full conditional) $\Sigma | \theta, Y$, is then

$$egin{aligned} \pi(\Sigma|oldsymbol{ heta},oldsymbol{Y})&\propto p(oldsymbol{Y}|oldsymbol{ heta},\Sigma)\cdot\pi(\Sigma) \ &\propto |\Sigma|^{-rac{n}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[oldsymbol{S}_{ heta}\Sigma^{-1}
ight]
ight\}\cdot|\Sigma|^{rac{-(
u_0+p+1)}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}(oldsymbol{S}_0\Sigma^{-1})
ight\} \ &\propto |\Sigma|^{rac{-(
u_0+p+n+1)}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[oldsymbol{S}_0\Sigma^{-1}+oldsymbol{S}_{ heta}\Sigma^{-1}
ight]
ight\}, \ &\propto |\Sigma|^{rac{-(
u_0+n+p+1)}{2}}\exp\left\{-rac{1}{2}\mathrm{tr}\left[\left(oldsymbol{S}_0+oldsymbol{S}_{ heta}
ight)\Sigma^{-1}
ight]
ight\}, \end{aligned}$$

which is $\mathrm{IW}_p(\nu_n, \boldsymbol{S}_n)$, or using the notation in the book, $\mathrm{IW}_p(\nu_n, \boldsymbol{S}_n^{-1})$, with

- \blacksquare $\nu_n=\nu_0+n$, and
- $lacksquare S_n = [oldsymbol{S}_0 + oldsymbol{S}_ heta]$

CONDITIONAL POSTERIOR FOR COVARIANCE

- We once again see that the "posterior sample size" or "posterior degrees of freedom" ν_n is the sum of the "prior degrees of freedom" ν_0 and the data sample size n.
- S_n can be thought of as the "posterior sum of squares", which is the sum of "prior sum of squares" plus "sample sum of squares".
- lacksquare Recall that if $\Sigma \sim \mathrm{IW}_p(
 u_0, oldsymbol{S}_0)$, then $\mathbb{E}[\Sigma] = rac{1}{
 u_0 p 1} oldsymbol{S}_0$.
- ⇒ the conditional posterior expectation of the population covariance is

$$\mathbb{E}[\Sigma | oldsymbol{ heta}, oldsymbol{Y}] = rac{1}{
u_0 + n - p - 1} [oldsymbol{S}_0 + oldsymbol{S}_{ heta}] = \underbrace{rac{
u_0 - p - 1}{
u_0 + n - p - 1}}_{ ext{weight on prior expectation}} oldsymbol{rac{1}{
u_0 - p - 1} S_0} + \underbrace{rac{n}{
u_0 + n - p - 1}}_{ ext{weight on sample estimate}} oldsymbol{rac{1}{n} S_{ heta}},$$

which is a weighted average of prior expectation and sample estimate.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

