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HIERARCHICAL MODELING OF MEANS RECAP

We've looked at the hierarchical normal model of the form

The model gives us an extra hierarchy through the prior on the means,
leading to sharing of information across the groups, when estimating the
group-specific means.

We set the variance, , as the same for all groups, to simplify posterior
inference.

We will relax that assumption in this module.

yij|θj, σ2 ∼ N (θj, σ2) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J.

σ2
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HIERARCHICAL MODELING OF MEANS AND

VARIANCES

Often researchers emphasize differences in means. However, variances
can be very important.

If we think means vary across groups, why shouldn't we worry about
variances also varying across groups?

In that case, we have the model

However, now we also need a model on all the 's that lets us borrow

information about across groups.

yij|θj, σ2 ∼ N (θj, σ2
j) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

σ2
j
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POSTERIOR INFERENCE

Now we need to find a semi-conjugate distribution for the 's. Before,

with one , we had

which was nicely semi-conjugate.

That suggests that maybe we should start with.

However, if we just fix the hyperparameters  and  in advance, the

prior on the 's does not allow borrowing of information across other

values of , to aid in estimation.

Thus, we actually need to treat  and  as parameters in a hierarchical
model for both means and variances.

σ2
j

σ2

π(σ2) = IG( , ) ,
ν0
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ν0σ2
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J |ν0, σ2
0 ∼ IG( , )
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POSTERIOR INFERENCE

Therefore, the full posterior is now:

π(θ1, … , θJ , σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0 |Y ) ∝ p(y|θ1, … , θJ , σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0)

     × p(θ1, … , θJ |σ2
1 , … , σ2

J
, μ, τ 2, ν0, σ2

0)

     × p(σ2
1 , … , σ2

J
|μ, τ 2, ν0, σ2

0)

     × π(μ, τ 2, ν0, σ2
0)

= p(y|θ1, … , θJ , σ2
1 , … , σ2

J
)

     × p(θ1, … , θJ |μ, τ 2)

     × p(σ2
1 , … , σ2

J
|ν0, σ2

0)

     × π(μ) ⋅ π(τ 2) ⋅ π(ν0) ⋅ π(σ2
0)

= {
J

∏
j=1

nj

∏
i=1

p(yij|θj, σ2
j
)}

     × {
J

∏
j=1

p(θj|μ, τ 2)}

     × {
J

∏
j=1

p(σ2
j
|ν0, σ2

0)}

     × π(μ) ⋅ π(τ 2) ⋅ π(ν0) ⋅ π(σ2
0)
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FULL CONDITIONALS

Notice that this new factorization won't affect the full conditionals for 
and  from before, since those have nothing to do with all the new 's.

That is,

and

μ
τ 2 σ2

j

π(μ| ⋯ ⋯) = N (μn, γ2
n)     where

γ2
n = ;         μn = γ2

n [ θ̄ + μ0] ,
1

+
J

τ 2

1

γ2
0

J

τ 2

1

γ2
0

π(τ 2| ⋯ ⋯) = IG( , )     where

ηn = η0 + J;        τ 2
n = [η0τ 2

0 +
J

∑
j=1

(θj − μ)2] .

ηn

2

ηnτ 2
n

2

1

ηn
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FULL CONDITIONALS

The full conditional for each , we have

with the only change from before being .

That is, those terms still include a normal density for  multiplied by a
product of normals in which  is the mean, again mirroring the previous
case, so you can show that

θj

π(θj|θ−j, μ, σ2
1 , … , σ2

J , τ 2, Y ) ∝ {
nj

∏
i=1

p(yij|θj, σ2
j
)} ⋅ p(θj|μ, τ 2)

σ2
j

θj

θj

π(θj|θ−j, μ, σ2
1 , … , σ2

J , τ 2, Y ) = N (μ⋆
j
, τ ⋆

j
)     where

τ ⋆
j = ;        μ⋆

j
= τ ⋆

j
[ ȳ j + μ]

1

+
nj

σ2
j

1
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σ2
j
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HOW ABOUT WITHIN-GROUP VARIANCES?
Before we get to the choice of the priors for  and , we have enough

to derive the full conditional for each . This actually takes a similar

form to what we had before we indexed by , that is,

This still looks like what we had before, that is, products of normals and
one inverse-gamma, so that

ν0 σ2
0

σ2
j

j

π(σ2
j |σ2

−j, θ1, … , θJ , μ, τ 2, ν0, σ2
0 , Y ) ∝ {

nj

∏
i=1

p(yij|θj, σ2
j
)} ⋅ π(σ2

j
|ν0, σ2

0)

π(σ2
j |σ2

−j, θ1, … , θJ , μ, τ 2, ν0, σ2
0 , Y ) = IG

⎛
⎜
⎝

,
⎞
⎟
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    where
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0 +
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∑
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REMAINING HYPER-PRIORS

Now we can get back to priors for  and . Turns out that a semi-
conjugate prior for  (you have seen this on the homework) is a gamma
distribution. That is, if we set

then,

Recall that

, and

.

ν0 σ2
0

σ2
0

π(σ2
0) = Ga (a, b) ,

π(σ2
0 |θ1, … , θJ , σ2

1 , … , σ2
J
, μ, τ 2, ν0, Y ) ∝ {

J

∏
j=1

p(σ2
j
|ν0, σ2

0)} ⋅ π(σ2
0)

∝  IG(σ2
j
; , )   ⋅  Ga (σ2

0 ; a, b)
ν0

2

ν0σ2
0

2

Ga(y; a, b) ≡ ya−1e−byba

Γ(a)

IG(y; a, b) ≡ y−(a+1)e
−ba

Γ(a)

b

y
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REMAINING HYPER-PRIORS

So π(σ2
0 |θ1, … , θJ , σ2

1 , … , σ2
J , μ, τ 2, ν0, Y )

∝ {
J

∏
j=1

p(σ2
j |ν0, σ2

0)} ⋅ π(σ2
0)

∝  
J

∏
j=1

 IG(σ2
j ; , )   ⋅  Ga (σ2

0 ; a, b)

=
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⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
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⎢ ⎢ ⎢ ⎢
⎣
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∏
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(σ2
0)
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−
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⎥ ⎥ ⎥ ⎥
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⎢ ⎢ ⎢ ⎢
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0
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⎢ ⎢
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⎦

⎤
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⎦

⋅ [(σ2
0)a−1e−bσ2

0]
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REMAINING HYPER-PRIORS

That is, the full conditional is

where

π(σ2
0 | ⋯ ⋯) ∝

⎡
⎢ ⎢ ⎢ ⎢
⎣

(σ2
0)
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⎢ ⎢
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REMAINING HYPER-PRIORS

Ok that leaves us with one parameter to go, i.e., . Turns out there is
no simple conjugate/semi-conjugate prior for .

Common practice is to restrict  to be an integer (which makes sense
when we think of it as being degrees of freedom, which also means it
cannot be zero). With the restriction, we need a discrete distribution as
the prior with support on .

Question: Can we use either a binomial or a Poisson prior on for ?

A popular choice is the geometric distribution with pmf 
.

However, we will rewrite the kernel as . How did we get
here from the geometric pmf and what is ?

ν0

ν0

ν0

ν0 = 1, 2, 3, …

ν0

p(ν0) = (1 − p)ν0−1p

π(ν0) ∝ e−αν0

α
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FINAL FULL CONDITIONAL

With this prior, π(ν0|θ1, … , θJ , σ2
1 , … , σ2

J , μ, τ 2, σ2
0 , Y )

∝ {
J

∏
j=1

p(σ2
j |ν0, σ2

0)} ⋅ π(ν0)
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J
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FINAL FULL CONDITIONAL

That is, the full conditional is

which is not a well known kernel and is unnormalized (i.e., does not
integrate to 1 in its current form).

This sure looks like a lot, but it will be relatively easy to compute in R.

Now, technically, the support is .

However, at every iteration, we can compute this unnormalized density
across a grid of  values, say,  for some large ,
and then sample.
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FINAL FULL CONDITIONAL

One more thing, computing these probabilities on the raw scale can be
problematic especially because of the product inside. Good idea to
transform to the log scale instead.

That is,

π(ν0| ⋯ ⋯) ∝
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FULL MODEL

As a recap, the final model is therefore:

yij|θj, σ2 ∼ N (θj, σ2
j) ;    i = 1, … , nj;    j = 1, … , J

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J

σ2
1 , … , σ2

J |ν0, σ2
0 ∼ IG( , ) ;    j = 1, … , J

μ ∼ N (μ0, γ2
0)

τ 2 ∼ IG( , ) .

π(ν0) ∝ e−αν0

σ2
0 ∼ Ga (a, b) .
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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