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BAYESIAN LINEAR REGRESSION RECAP

Sampling model:

Semi-conjugate prior for :

Semi-conjugate prior for :

Y ∼ Nn(Xβ, σ2In×n).

β

π(β) = Np(μ0, Σ0).
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FULL CONDITIONAL

where

and

where

π(β|y, X, σ2) =  Np(μn, Σn),

Σn = [Σ−1
0 + XT X]
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SWIMMING DATA

Back to the swimming example. The data is from Exercise 9.1 in Hoff.

The data set we consider contains times (in seconds) of four high school
swimmers swimming 50 yards.

Y <- read.table("http://www2.stat.duke.edu/~pdh10/FCBS/Exercises/swim.dat")
Y

##     V1   V2   V3   V4   V5   V6
## 1 23.1 23.2 22.9 22.9 22.8 22.7
## 2 23.2 23.1 23.4 23.5 23.5 23.4
## 3 22.7 22.6 22.8 22.8 22.9 22.8
## 4 23.7 23.6 23.7 23.5 23.5 23.4

There are 6 times for each student, taken every two weeks. That is, each
swimmer has six measurements at  weeks.

Each row corresponds to a swimmer and a higher column index indicates
a later date.

t = 2, 4, 6, 8, 10, 12
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SWIMMING DATA

Given that we don't have enough data, we can explore hierarchical
models. That way, we can borrow information across swimmers.

For now, however, we will fit a separate linear regression model for each
swimmer, with swimming time as the response and week as the
explanatory variable (which we will mean center).

For setting priors, we have one piece of information: times for this age
group tend to be between 22 and 24 seconds.

Based on that, we can set uninformative parameters for the prior on 
and for the prior on , we can set

This centers the intercept at 23 (the middle of the given range) and the
slope at 0 (so we are assuming no increase) but we choose the variance
to be a bit large to err on the side of being less informative.

σ2

β

π(β) = N2 (μ0 = (
23

0
) , Σ0 = (

5 0

0 2
)) .
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POSTERIOR COMPUTATION

#Create X matrix, transpose Y for easy computayion
Y <- t(Y)
n_swimmers <- ncol(Y)
n <- nrow(Y)
W <- seq(2,12,length.out=n)
X <- cbind(rep(1,n),(W-mean(W)))
p <- ncol(X)

#Hyperparameters for the priors
mu_0 <- matrix(c(23,0),ncol=1)
Sigma_0 <- matrix(c(5,0,0,2),nrow=2,ncol=2)
nu_0 <- 1
sigma_0_sq <- 1/10

#Initial values for Gibbs sampler
#No need to set initial value for sigma^2, we can simply sample it first
beta <- matrix(c(23,0),nrow=p,ncol=n_swimmers)
sigma_sq <- rep(1,n_swimmers)

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

#Set null matrices to save samples
BETA <- array(0,c(n_swimmers,n_iter,p))
SIGMA_SQ <- matrix(0,n_swimmers,n_iter)
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POSTERIOR COMPUTATION

#Now, to the Gibbs sampler
#library(mvtnorm) for multivariate normal

#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter
set.seed(1234)

for(s in 1:(n_iter+burn_in)){
  for(j in 1:n_swimmers){

    #update the sigma_sq
    nu_n <- nu_0 + n
    SSR <- t(Y[,j] - X%*%beta[,j])%*%(Y[,j] - X%*%beta[,j])
    nu_n_sigma_n_sq <- nu_0*sigma_0_sq + SSR
    sigma_sq[j] <- 1/rgamma(1,(nu_n/2),(nu_n_sigma_n_sq/2))

    #update beta
    Sigma_n <- solve(solve(Sigma_0) + (t(X)%*%X)/sigma_sq[j])
    mu_n <- Sigma_n %*% (solve(Sigma_0)%*%mu_0 + (t(X)%*%Y[,j])/sigma_sq[j])
    beta[,j] <- rmvnorm(1,mu_n,Sigma_n)

    #save results only past burn-in
    if(s > burn_in){
      BETA[j,(s-burn_in),] <- beta[,j]
      SIGMA_SQ[j,(s-burn_in)] <- sigma_sq[j]
    }
  }
}
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RESULTS

Before looking at the posterior samples, what are the OLS estimates for
all the parameters?

beta_ols <- matrix(0,nrow=p,ncol=n_swimmers)
for(j in 1:n_swimmers){
beta_ols[,j] <- solve(t(X)%*%X)%*%t(X)%*%Y[,j]
}
colnames(beta_ols) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_ols) <- c("beta_0","beta_1")
beta_ols

##          Swimmer 1   Swimmer 2 Swimmer 3   Swimmer 4
## beta_0 22.93333333 23.35000000  22.76667 23.56666667
## beta_1 -0.04571429  0.03285714   0.02000 -0.02857143

Can you interpret the parameters?

Any thoughts on who the coach should recommend based on this alone? Is
this how we should be answering the question?
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POSTERIOR INFERENCE

Posterior means are almost identical to OLS estimates.

beta_postmean <- t(apply(BETA,c(1,3),mean))
colnames(beta_postmean) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_postmean) <- c("beta_0","beta_1")
beta_postmean

##         Swimmer 1   Swimmer 2   Swimmer 3   Swimmer 4
## beta_0 22.9339174 23.34963191 22.76617785 23.56614309
## beta_1 -0.0453998  0.03251415  0.01991469 -0.02854268

How about credible intervals?

beta_postCI <- apply(BETA,c(1,3),function(x) quantile(x,probs=c(0.025,0.975)))
colnames(beta_postCI) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
beta_postCI[,,1]; beta_postCI[,,2]

##       Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## 2.5%   22.76901  23.15949  22.60097  23.40619
## 97.5%  23.09937  23.53718  22.93082  23.73382

##          Swimmer 1   Swimmer 2   Swimmer 3   Swimmer 4
## 2.5%  -0.093131856 -0.02128792 -0.02960257 -0.07704344
## 97.5%  0.002288246  0.08956464  0.06789081  0.01940960
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POSTERIOR INFERENCE

Is there any evidence that the times matter?

beta_pr_great_0 <- t(apply(BETA,c(1,3),function(x) mean(x > 0)))
colnames(beta_pr_great_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_pr_great_0) <- c("beta_0","beta_1")
beta_pr_great_0

##        Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0    1.0000    1.0000    1.0000    1.0000
## beta_1    0.0287    0.9044    0.8335    0.0957

#or alternatively,
beta_pr_less_0 <- t(apply(BETA,c(1,3),function(x) mean(x < 0)))
colnames(beta_pr_less_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_pr_less_0) <- c("beta_0","beta_1")
beta_pr_less_0

##        Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0    0.0000    0.0000    0.0000    0.0000
## beta_1    0.9713    0.0956    0.1665    0.9043

10 / 14



POSTERIOR PREDICTIVE INFERENCE

How about the posterior predictive distributions for a future time two
weeks after the last recorded observation?

x_new <- matrix(c(1,(14-mean(W))),ncol=1)
post_pred <- matrix(0,nrow=n_iter,ncol=n_swimmers)
for(j in 1:n_swimmers){
post_pred[,j] <- rnorm(n_iter,BETA[j,,]%*%x_new,sqrt(SIGMA_SQ[j,]))
}
colnames(post_pred) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")

plot(density(post_pred[,"Swimmer 1"]),col="red3",xlim=c(21.5,25),ylim=c(0,3.5),lwd=1.
 main="Predictive Distributions",xlab="swimming times")
legend("topleft",2,c("Swimmer1","Swimmer2","Swimmer3","Swimmer4"),col=c("red3","blue3
lines(density(post_pred[,"Swimmer 2"]),col="blue3",lwd=1.5)
lines(density(post_pred[,"Swimmer 3"]),col="orange2",lwd=1.5)
lines(density(post_pred[,"Swimmer 4"]),lwd=1.5)
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POSTERIOR PREDICTIVE INFERENCE
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POSTERIOR PREDICTIVE INFERENCE

How else can we answer the question on who the coach should
recommend for the swim meet in two weeks time? Few different ways.

Let  be the predicted swimming time for each swimmer . We can do

the following: using draws from the predictive distributions, compute the
posterior probability that  for each

swimmer , and based on this make a recommendation to the coach.

That is,

post_pred_min <- as.data.frame(apply(post_pred,1,function(x) which(x==min(x))))
colnames(post_pred_min) <- "Swimmers"
post_pred_min$Swimmers <- as.factor(post_pred_min$Swimmers)
levels(post_pred_min$Swimmers) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
table(post_pred_min$Swimmers)/n_iter

## 
## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4 
##    0.7790    0.0078    0.1994    0.0138

Which swimmer would you recommend?

Y ⋆
j j

P(Y ⋆
j

= min(Y ⋆
1 , Y ⋆

2 , Y ⋆
3 , Y ⋆

4 ))

j
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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