STA 360/602L: MODULE 6.2

BAYESIAN LINEAR REGRESSION (ILLUSTRATION)

DR. OLANREWAJU MICHAEL AKANDE

BAYESIAN LINEAR REGRESSION RECAP

• Sampling model:

$$oldsymbol{Y} \sim \mathcal{N}_n(oldsymbol{X}oldsymbol{eta}, \sigma^2oldsymbol{I}_{n imes n}).$$

• Semi-conjugate prior for β :

$$\pi(oldsymbol{eta}) = \mathcal{N}_p(oldsymbol{\mu}_0, \Sigma_0).$$

• Semi-conjugate prior for σ^2 :

$$\pi(\sigma^2) = \mathcal{IG}\left(rac{
u_0}{2},rac{
u_0\sigma_0^2}{2}
ight)$$

Full conditional

$$\pi(oldsymbol{eta}|oldsymbol{y},oldsymbol{X},\sigma^2) = \ \mathcal{N}_p(oldsymbol{\mu}_n,\Sigma_n),$$

where

$$egin{split} \Sigma_n &= \left[\Sigma_0^{-1} + rac{1}{\sigma^2} oldsymbol{X}^T oldsymbol{X}
ight]^{-1} \ oldsymbol{\mu}_n &= \Sigma_n \left[\Sigma_0^{-1} oldsymbol{\mu}_0 + rac{1}{\sigma^2} oldsymbol{X}^T oldsymbol{y}
ight], \end{split}$$

and

$$\pi(\sigma^2|oldsymbol{y},oldsymbol{X},oldsymbol{eta}) = \mathcal{IG}\left(rac{
u_n}{2},rac{
u_n\sigma_n^2}{2}
ight),$$

where

$$egin{split}
u_n &=
u_0 + n \ \sigma_n^2 &= rac{1}{
u_n} ig[
u_0 \sigma_0^2 + (oldsymbol{y} - oldsymbol{X}oldsymbol{eta})^T (oldsymbol{y} - oldsymbol{X}oldsymbol{eta}) ig] &= rac{1}{
u_n} ig[
u_0 \sigma_0^2 + ext{SSR}(oldsymbol{eta}) ig] \,. \end{split}$$

3 / 14

Swimming data

- Back to the swimming example. The data is from Exercise 9.1 in Hoff.
- The data set we consider contains times (in seconds) of four high school swimmers swimming 50 yards.

```
Y <- read.table("http://www2.stat.duke.edu/~pdh10/FCBS/Exercises/swim.dat")
Y</pre>
```

 ##
 V1
 V2
 V3
 V4
 V5
 V6

 ##
 1
 23.1
 23.2
 22.9
 22.9
 22.8
 22.7

 ##
 2
 23.2
 23.1
 23.4
 23.5
 23.5
 23.4

 ##
 3
 22.7
 22.6
 22.8
 22.8
 22.9
 22.8

 ##
 4
 23.7
 23.6
 23.7
 23.5
 23.5
 23.4

- There are 6 times for each student, taken every two weeks. That is, each swimmer has six measurements at t=2,4,6,8,10,12 weeks.
- Each row corresponds to a swimmer and a higher column index indicates a later date.

Swimming data

- Given that we don't have enough data, we can explore hierarchical models. That way, we can borrow information across swimmers.
- For now, however, we will fit a separate linear regression model for each swimmer, with swimming time as the response and week as the explanatory variable (which we will mean center).
- For setting priors, we have one piece of information: times for this age group tend to be between 22 and 24 seconds.
- Based on that, we can set uninformative parameters for the prior on σ^2 and for the prior on β , we can set

$$\pi(oldsymbol{eta}) = \mathcal{N}_2\left(oldsymbol{\mu}_0 = egin{pmatrix} 23 \ 0 \end{pmatrix}, \Sigma_0 = egin{pmatrix} 5 & 0 \ 0 & 2 \end{pmatrix}
ight).$$

This centers the intercept at 23 (the middle of the given range) and the slope at 0 (so we are assuming no increase) but we choose the variance to be a bit large to err on the side of being less informative.

POSTERIOR COMPUTATION

```
#Create X matrix, transpose Y for easy computayion
Y < - t(Y)
n swimmers <- ncol(Y)
n < - nrow(Y)
W <- seq(2,12,length.out=n)</pre>
X <- cbind(rep(1,n),(W-mean(W)))</pre>
p <- ncol(X)
#Hyperparameters for the priors
mu 0 \leq matrix(c(23,0),ncol=1)
Sigma 0 <- matrix(c(5,0,0,2), nrow=2, ncol=2)
nu_0 <- 1
sigma_0_sq <- 1/10
#Initial values for Gibbs sampler
#No need to set initial value for sigma^2, we can simply sample it first
beta <- matrix(c(23,0),nrow=p,ncol=n_swimmers)</pre>
sigma sq <- rep(1,n swimmers)</pre>
#first set number of iterations and burn-in, then set seed
n_iter <- 10000; burn_in <- 0.3*n_iter</pre>
set.seed(1234)
#Set null matrices to save samples
BETA <- array(0,c(n_swimmers,n_iter,p))</pre>
SIGMA_SQ <- matrix(0,n_swimmers,n_iter)</pre>
```


POSTERIOR COMPUTATION

```
#Now, to the Gibbs sampler
#library(mvtnorm) for multivariate normal
#first set number of iterations and burn-in, then set seed
n iter <- 10000; burn in <- 0.3*n iter
set.seed(1234)
for(s in 1:(n iter+burn in)){
 for(j in 1:n_swimmers){
    #update the sigma_sq
    nu_n <- nu_0 + n
    SSR <- t(Y[,j] - X%*%beta[,j])%*%(Y[,j] - X%*%beta[,j])</pre>
    nu_n_sigma_n_sq <- nu_0*sigma_0_sq + SSR</pre>
    sigma_sq[j] <- 1/rgamma(1,(nu_n/2),(nu_n_sigma_n_sq/2))</pre>
    #update beta
    Sigma_n <- solve(solve(Sigma_0) + (t(X)%*%X)/sigma_sq[j])</pre>
    mu_n <- Sigma_n %*% (solve(Sigma_0)%*%mu_0 + (t(X)%*%Y[,j])/sigma_sq[j])</pre>
    beta[,j] <- rmvnorm(1,mu_n,Sigma_n)</pre>
    #save results only past burn-in
    if(s > burn_in){
      BETA[j,(s-burn_in),] <- beta[,j]</pre>
      SIGMA_SQ[j,(s-burn_in)] <- sigma_sq[j]</pre>
  }
```


RESULTS

Before looking at the posterior samples, what are the OLS estimates for all the parameters?

```
beta_ols <- matrix(0,nrow=p,ncol=n_swimmers)
for(j in 1:n_swimmers){
beta_ols[,j] <- solve(t(X)%*%X)%*%t(X)%*%Y[,j]
}
colnames(beta_ols) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_ols) <- c("beta_0","beta_1")
beta_ols</pre>
```

```
## Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
## beta_0 22.9333333 23.35000000 22.76667 23.56666667
## beta_1 -0.04571429 0.03285714 0.02000 -0.02857143
```

- Can you interpret the parameters?
- Any thoughts on who the coach should recommend based on this alone? Is this how we should be answering the question?

POSTERIOR INFERENCE

Posterior means are almost identical to OLS estimates.

```
beta_postmean <- t(apply(BETA,c(1,3),mean))
colnames(beta_postmean) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_postmean) <- c("beta_0","beta_1")
beta_postmean</pre>
```

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
beta_0 22.9339174 23.34963191 22.76617785 23.56614309
beta_1 -0.0453998 0.03251415 0.01991469 -0.02854268

How about credible intervals?

```
beta_postCI <- apply(BETA,c(1,3),function(x) quantile(x,probs=c(0.025,0.975)))
colnames(beta_postCI) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
beta_postCI[,,1]; beta_postCI[,,2]</pre>
```

##Swimmer 1Swimmer 2Swimmer 3Swimmer 4## 2.5%22.7690123.1594922.6009723.40619## 97.5%23.0993723.5371822.9308223.73382

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4
2.5% -0.093131856 -0.02128792 -0.02960257 -0.07704344
97.5% 0.002288246 0.08956464 0.06789081 0.01940960

POSTERIOR INFERENCE

Is there any evidence that the times matter?

```
beta_pr_great_0 <- t(apply(BETA,c(1,3),function(x) mean(x > 0)))
colnames(beta_pr_great_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_pr_great_0) <- c("beta_0","beta_1")
beta_pr_great_0</pre>
```

##		Swimmer 1	Swimmer 2	Swimmer 3	Swimmer 4
##	beta_0	1.0000	1.0000	1.0000	1.0000
##	beta_1	0.0287	0.9044	0.8335	0.0957

```
#or alternatively,
beta_pr_less_0 <- t(apply(BETA,c(1,3),function(x) mean(x < 0)))
colnames(beta_pr_less_0) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
rownames(beta_pr_less_0) <- c("beta_0","beta_1")
beta_pr_less_0
```

##		Swimmer 1	Swimmer 2	Swimmer 3	Swimmer 4
##	beta_0	0.0000	0.0000	0.0000	0.0000
##	beta_1	0.9713	0.0956	0.1665	0.9043

POSTERIOR PREDICTIVE INFERENCE

How about the posterior predictive distributions for a future time two weeks after the last recorded observation?

```
x_new <- matrix(c(1,(14-mean(W))),ncol=1)
post_pred <- matrix(0,nrow=n_iter,ncol=n_swimmers)
for(j in 1:n_swimmers){
post_pred[,j] <- rnorm(n_iter,BETA[j,,]%*%x_new,sqrt(SIGMA_SQ[j,]))
}
colnames(post_pred) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
plot(density(post_pred[,"Swimmer 1"]),col="red3",xlim=c(21.5,25),ylim=c(0,3.5),lwd=1.
main="Predictive Distributions",xlab="swimming times")
legend("topleft",2,c("Swimmer1","Swimmer2","Swimmer3","Swimmer4"),col=c("red3","blue3
lines(density(post_pred[,"Swimmer 2"]),col="blue3",lwd=1.5)
lines(density(post_pred[,"Swimmer 4"]),lwd=1.5)</pre>
```


POSTERIOR PREDICTIVE INFERENCE

Predictive Distributions

swimming times

POSTERIOR PREDICTIVE INFERENCE

- How else can we answer the question on who the coach should recommend for the swim meet in two weeks time? Few different ways.
- Let Y_j^* be the predicted swimming time for each swimmer j. We can do the following: using draws from the predictive distributions, compute the posterior probability that $P(Y_j^* = \min(Y_1^*, Y_2^*, Y_3^*, Y_4^*))$ for each swimmer j, and based on this make a recommendation to the coach.

• That is,

```
post_pred_min <- as.data.frame(apply(post_pred,1,function(x) which(x==min(x))))
colnames(post_pred_min) <- "Swimmers"
post_pred_min$Swimmers <- as.factor(post_pred_min$Swimmers)
levels(post_pred_min$Swimmers) <- c("Swimmer 1","Swimmer 2","Swimmer 3","Swimmer 4")
table(post_pred_min$Swimmers)/n_iter</pre>
```

Swimmer 1 Swimmer 2 Swimmer 3 Swimmer 4 ## 0.7790 0.0078 0.1994 0.0138

Which swimmer would you recommend?

WHAT'S NEXT?

Move on to the readings for the next module!

