STA 360/602L: MODULE 6.4

BAYESIAN HYPOTHESIS TESTING

DR. OLANREWAJU MICHAEL AKANDE

BAYESIAN HYPOTHESIS TESTING

- How to do Bayesian hypothesis testing for a simple model?
- Suppose we have univariate data $y_i \stackrel{iid}{\sim} \mathcal{N}(\mu,1)$ and wish to test $\mathcal{H}_0: \mu = 0; \;\; \mathrm{vs.} \mathcal{H}_1: \mu \neq 0$ under the Bayesian paradigm.
- **Informal approach:**
	- 1. Put a prior on μ , $\pi(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$.
	- 2. Compute posterior $\mu|Y=(y_1,\ldots,y_n) \sim \mathcal{N}(\mu_n, \sigma_n^2)$ for updated parameters μ_n and σ_n^2 . $\binom{2}{n}$
	- 3. Compute a 95% CI based on the posterior.
	- 4. Reject \mathcal{H}_0 if interval does not contain zero.

BAYESIAN HYPOTHESIS TESTING

■ Formal approach:

1. Put a prior on the actual hypotheses/models, that is, on $\pi(\mathcal{H}_0) = \Pr(\mathcal{H}_0 = \text{True})$ and $\pi(\mathcal{H}_1) = \Pr(\mathcal{H}_1 = \text{True}).$

For example, set $\pi(\mathcal{H}_0) = 0.5$ and $\pi(\mathcal{H}_1) = 0.5$, if apriori, we believe the two hypotheses are equally likely.

2. Put a prior on the parameters in each model.

In our simple normal model, the only unknown parameter is μ , so for example, our prior can once again be $\pi(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$.

- 3. Compute marginal posterior probabilities for each hypothesis, that is, $\pi(\mathcal{H}_0|Y)$ and $\pi(\mathcal{H}_1|Y)$. Can start with the joint posterior between each hypothesis and the parameter, then integrate out the parameter.
- 4. Conclude based on the magnitude of $\pi(\mathcal{H}_1|Y)$ relative to $\pi(\mathcal{H}_0|Y).$

BAYESIAN HYPOTHESIS TESTING

Using Bayes theorem,

$$
\pi(\mathcal{H}_1|Y)=\frac{p(Y|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(Y|\mathcal{H}_0)\pi(\mathcal{H}_0)+p(Y|\mathcal{H}_1)\pi(\mathcal{H}_1)},
$$

where $p(Y|{\cal H}_0)$ and $p(Y|{\cal H}_1)$ are the marginal likelihoods for the data under the null and alternative hypotheses respectively.

If for example we set $\pi(\mathcal{H}_0) = 0.5$ and $\pi(\mathcal{H}_1) = 0.5$ apriori, then

$$
\pi(\mathcal{H}_1 | Y) = \frac{0.5 p(Y | \mathcal{H}_1)}{0.5 p(Y | \mathcal{H}_0) + 0.5 p(Y | \mathcal{H}_1)} \\ = \frac{p(Y | \mathcal{H}_1)}{p(Y | \mathcal{H}_0) + p(Y | \mathcal{H}_1)} = \frac{1}{\frac{p(Y | \mathcal{H}_0)}{p(Y | \mathcal{H}_0)} + 1}.
$$

The ratio $\frac{P(Y|P(0))}{P(Y|Z)}$ is known as the Bayes factor in favor of \mathcal{H}_0 , and often written as $\hat{\mathcal{BF}}_{01}.$ Similarly, we can compute $\mathcal{BF}_{10}.$ $\frac{p(Y|\mathcal{H}_0)}{p(Y|\mathcal{H}_1)}$ is known as the Bayes factor in favor of \mathcal{H}_0

- Bayes factor: is a ratio of marginal likelihoods and it provides a weight of evidence in the data in favor of one model over another.
- It is often used as an alternative to the frequentist p -value.
- **Rule of thumb:** $B\mathcal{F}_{01} > 10$ is strong evidence for \mathcal{H}_0 ; $B\mathcal{F}_{01} > 100$ is decisive evidence for \mathcal{H}_0 .
- Notice that for our example,

$$
\pi(\mathcal{H}_1|Y)=\frac{1}{\frac{p(Y|\mathcal{H}_0)}{p(Y|\mathcal{H}_1)}+1}=\frac{1}{\mathcal{BF}_{01}+1}
$$

the higher the value of \mathcal{BF}_{01} , that is, the weight of evidence in the data in favor of \mathcal{H}_0 , the lower the marginal posterior probability that \mathcal{H}_1 is true.

\n- That is, here, as
$$
\mathcal{BF}_{01} \uparrow
$$
, $\pi(\mathcal{H}_1|Y) \downarrow$.
\n

Let's look at another way to think of Bayes factors. First, recall that

$$
\pi(\mathcal{H}_1|Y)=\frac{p(Y|\mathcal{H}_1)\pi(\mathcal{H}_1)}{p(Y|\mathcal{H}_0)\pi(\mathcal{H}_0)+p(Y|\mathcal{H}_1)\pi(\mathcal{H}_1)},
$$

so that

- Therefore, the Bayes factor can be thought of as the factor by which our prior odds change (towards the posterior odds) in the light of the data.
- In linear regression, BIC approximates the \mathcal{BF} comparing a model to the \Box null model.

- While Bayes factors can be appealing, calculating them can be computationally demanding.
- Why have we been "mildly obsessed" with MCMC sampling? To avoid computing any **marginal likelihoods**! Well, guess what? Bayes factors are ratios of marginal likelihoods, taking us back to the problem we always try to avoid.
- Of course this isn't all *"doom and gloom"*, there are various ways (once again!) of getting around computing those likelihoods analytically.
- Unfortunately, we will not have time to cover them in this course.

As a teaser, one approach is to flip the relationship on the previous slide:

which is easy to compute as long as we can use posterior samples to compute/approximate the posterior odds.

- Bayes factors can work well when the underlying model is discrete but do not work well for models that are inherently continuous.
- **[For more discussions on this, see Chapter 7.4 of Bayesian Data Analysis](https://find.library.duke.edu/catalog/DUKE006588051?utm_campaign=bento&utm_content=bento_result_link&utm_source=library.duke.edu&utm_medium=referral)** (Third Edition).
- Even in the discrete case, Bayes factors are not perfect, as we see in the following example.

- Suppose we have univariate data $y_1, \ldots, y_n|\theta \sim \text{Bernoulli}(\theta).$
- Also, suppose we wish to test $\mathcal{H}_0 : \theta = 0.5~ \text{ vs. } \mathcal{H}_1 : \theta \neq 0.5,$ using the Bayes factor.
- First, we need to put priors on the two hypotheses. Again, if apriori we believe the two hypotheses are equally likely, then we can set

$$
\pi(\mathcal{H}_0)=\Pr(\mathcal{H}_0={\rm True})=0.5; \ \ \pi(\mathcal{H}_1)=\Pr(\mathcal{H}_1={\rm True})=0.5.
$$

- Next, we need to put priors on the parameters in each model.
	- When \mathcal{H}_0 is true, we have that $\theta = 0.5$ and so there's no need for a prior on $\theta.$
	- When \mathcal{H}_1 is true, we can set a conjugate prior for θ , that is, $Beta(a, b)$.

- To compute the Bayes factor, we need to compute $p(Y|\mathcal{H}_0)$ and $p(Y|{\mathcal H}_1).$
- For each, we need to start with the joint distribution of the data and parameter, given each hypothesis, then integrate out the parameter.
- For $p(Y|{\cal H}_0)$, we have

$$
p(Y|\mathcal{H}_0) = \int_0^1 p(Y, \theta | \mathcal{H}_0) d\theta
$$

=
$$
\int_0^1 p(Y|\mathcal{H}_0, \theta) \cdot \pi(\theta | \mathcal{H}_0) d\theta
$$

=
$$
\int_0^1 p(Y|\theta = 0.5) \cdot 1 d\theta
$$

=
$$
\int_0^1 0.5^{\sum_{i=1}^n y_i} (1 - 0.5)^{n - \sum_{i=1}^n y_i} \cdot 1 d\theta
$$

=
$$
0.5^n \int_0^1 1 d\theta
$$

=
$$
0.5^n
$$

For $p(Y|{\cal H}_1)$, we have

$$
\begin{aligned} p(Y|\mathcal{H}_1) &= \int_0^1 p(Y|\mathcal{H}_1, \theta) \cdot \pi(\theta|\mathcal{H}_1) \mathrm{d}\theta \\ &= \int_0^1 \theta^{\sum_{i=1}^n y_i} (1-\theta)^{n-\sum_{i=1}^n y_i} \cdot \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1} \mathrm{d}\theta \\ &= \frac{1}{B(a,b)} \int_0^1 \theta^{a+\sum_{i=1}^n y_i-1} (1-\theta)^{b+n-\sum_{i=1}^n y_i-1} \mathrm{d}\theta \\ &= \frac{B(a+\sum_{i=1}^n y_i, b+n-\sum_{i=1}^n y_i)}{B(a,b)} \end{aligned}
$$

Bayes factor in favor of ${\cal H}_0,$ $\mathcal{BF}_{01},$ is therefore

$$
\mathcal{BF}_{01}=\frac{p(Y|\mathcal{H}_0)}{p(Y|\mathcal{H}_1)}=\frac{0.5^nB(a,b)}{B(a+\sum_{i=1}^n y_i,b+n-\sum_{i=1}^n y_i)}.
$$

■ Also,

$$
\pi(\mathcal{H}_1|Y)=\frac{1}{\mathcal{BF}_{01}+1}=\frac{1}{\frac{0.5^nB(a,b)}{B(a+\sum_{i=1}^n y_i,b+n-\sum_{i=1}^n y_i)}+1}.
$$

- Suppose the true value of $\theta = 0.6$. Suppose that in $n = 20$ trials, we observe 13 successes, that is, $\sum_{i=1}^{n} y_i = 13$.
- If we assume a $\text{Beta}(a=1, b=1)$ prior on θ , then \mathcal{BF}_{01} is

 $0.5^20*beta(1,1)/beta(1+13,1+7)$

```
## [1] 1.552505
```
- On the other hand, $\mathcal{BF}_{10} \approx 0.64$. So that even though based on the data, our estimate of θ is $\hat{\theta} = \frac{13}{20} = 0.65$, we still have stronger evidence in favor of ${\cal H}_0$ over $\tilde{{\cal H}_1}$, which is interesting!
- There are a few contributing factors, including the sample size, our choice of prior, and how far $\hat{\theta}$ is from the true θ .
- You will explore this in more detail on the homework.

WHAT' S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

