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CATEGORICAL DATA (UNIVARIATE)

= Suppose
« Y € {1,...,D};
» Pr(y=d) =6, foreachd =1,...,D; and
= 0= (6,...,0p).

Then the pmf of Y is

D
Prly = d|g] = [] 6"
d=1

We say Y has a multinomial distribution with sample size 1, or a
categorical distribution.

Clearly, this is just an extension of the Bernoulli distribution.

Write as Y|@ ~ Multinomial(1, @) or Y'|@ ~ Categorical(8).
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DIRICHLET DISTRIBUTION

= Since the elements of the probability vector @ must always sum to one,
the support is often called a simplex.

= A conjugate prior for categorical/multinomial data is the Dirichlet
distribution.

= A random variable @ has a Dirichlet distribution with parameter «, if

F(ZdDzlad) D
Hejdfl, og>0 forall d=1,...,D.

plbla] = —
Hd:1 D(ag) a1

where o« = (a1, ...,ap), and
D
Y 6i=1, 02>0 forall d=1,...,D.
d=1

= We write this as @ ~ Dirichlet(a) = Dirichlet(ayq, ..., ap).

= The Dirichlet distribution is a multivariate generalization of the beta
distribution.

3/18




DIRICHLET DISTRIBUTION

» Write

agq
E ag and = :

7))

= Then we can re-write the pdf slightly as

T
p[0la] = LH&‘“ 'Yag>0foralld=1,...
T2 Taa) 31
= Properties:
u E[Od]:ag;
: Mode[8] — 24—
odelvd _Ol()—d’
ar(1—ar)  E[6,](1—E[8
. Var[6,) i d): [0a)( [64])
0+1 a0+1
asar E|6,;|E|0
. Cov[fy, 6] — —% [0a]E (6]



DIRICHLET EXAMPLES

Dirichlet(1,1,1)




DIRICHLET EXAMPLES

Dirichlet(10, 10, 10)




DIRICHLET EXAMPLES

Dirichlet(100, 100, 100)




DIRICHLET EXAMPLES

Dirichlet(1, 10, 1)




DIRICHLET EXAMPLES

Dirichlet(50, 100, 10)




LIKELIHOOD

Let Y;, ..., Y,|0 ~ Categorical(8).

= Recall
D
Pr[y; = d|6] = H gcll[yi:d].
d=1
= Then,
LS 1[y;=d = S yi=d] D
Y16 =plys,-.,wl0) = [T T 62" =[] e5 " =[] o
i=1 d=1 d=1 d=1

where ng is just the number of individuals in category d.

Maximum likelihood estimate of 0 is




POSTERIOR

» Set 7(0) = Dirichlet(ai,...,ap).

m(8]Y) o p[Y'|6] - (6]

= Posterior expectation:

D D
o H o H o!

d=1 d=1

D
ag+nqg—1
<11
d=1

= Dirichlet(a;1 + n1,...,ap + np)

aq + ng
E[64]Y] =

=1 (Oﬁd* + nd*)



COMBINING INFORMATION

= For the prior, we have

aqd

ZdD*:l Qg

E[04] =
= We can think of
» Goqg = [E[04] as being our "prior guess" about 4, and

D . " . ° n
= Ny = Y. g~ as being our "prior sample size".

= We can then rewrite the prior as (@) = Dirichlet(ny6y1, - . ., nobop)-




COMBINING INFORMATION

= We can write the posterior expectation as:

od + ng

D
d*=1 (g + ng-)

(0% nqg

= "
Yoge1 Qi+ Yy Nt Yogeey Qs+ gy N
10604 néd

E[64]Y] =

ng +n ng +n

nQ n A
= ) 04.
o+ 1 0d+n0+n d

since MLE is

= Once again, we can express our posterior expectation as a weighted
average of the prior expectation and MLE.

= We can also extend the Dirichlet-multinomial model to more variables
(contingency tables).




EXAMPLE: PRE-ELECTION POLLING

= Fox News Nov 3-6 pre-election survey of 1295 likely voters for the 2016
election.

= For those interested, FiveThirtyEight is an interesting source for pre-
election polls.

= Qut of 1295 respondents, 622 indicated support for Clinton, 570 for
Trump, and the remaining 103 for other candidates or no opinion.

= Drawing inference from pre-election polls is way more complicated and
nuanced that this. We only use the data here for this simple illustration.

= Assuming no other information on the respondents, we can assume simple
random sampling and use a multinomial distribution with parameter
0 = (01,62, 03), the proportion, in the survey population, of Clinton
supporters, Trump supporters and other candidates or no opinion.
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https://projects.fivethirtyeight.com/

EXAMPLE: PRE-ELECTION POLLING

With a noninformative uniform prior, we have (@) = Dirichlet(1, 1, 1)

The resulting posterior is
Dirichlet(1 4 n1,1 + n2, 1 + ng) = Dirichlet(623,571,104).

Suppose we wish to compare the proportion of people who would vote for
Trump versus Clinton, we could examine the posterior distribution of

61 — 0,.

We can even compute the probability Pr(6; > 65|Y).
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EXAMPLE: PRE-ELECTION POLLING

#library(gtools)

PostSamples <- rdirichlet(10000, alpha=c(623,571,104))

#dim(PostSamples)

hist((PostSamples[,1] - PostSamples[,2]),col=rainbow(20),xlab=expression(thetal[l]-theta[2]
ylab="Posterior Density",freq=F,breaks=50,
main=expression(paste("Posterior density of ",theta[l]-theta[2])))
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EXAMPLE: PRE-ELECTION POLLING

m Posterior probability that Clinton had more support than Trump in the
survey population, that is, Pr(6; > 6;|Y), is

#library(gtools)
mean (PostSamples[,1] > PostSamples[,2])

## [1] 0.9375

= Once again, this is just a simple illustration with a very small subset of
the 2016 pre-election polling data.

= Inference for pre-election polls is way more complex and nuanced that
this.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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