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MULTINOMIAL MODEL RECAP

Suppose , then

With prior , we have

So that the posterior is

However, what if our data actually comes from  different sub-
populations of groups of people?

For example, if our data comes from men and women, and we don't
expect marginal independence across the two groups (vote turnout,
income, etc), then we have a mixture of distributions.

yi, … , yn|θ
iid
∼ Categorical(θ)

Pr[yi = d|θ] =
D

∏
d=1

θ
1[yi=d]
d

,

π[θ] = Dirichlet(α)

π[θ] ∝
D

∏
d=1

θ
αj−1

j
,    αj > 0  for all  d = 1, … ,D.

π(θ|Y ) = Dirichlet(α1 + n1, … ,αD + nD)

K
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FINITE MIXTURE OF MULTINOMIALS

With our data coming from a "combination" or "mixture" of sub-
populations, we no longer have independence across all observations, so

that the likelihood .

However, we can still have "conditional independence" within each
group.

Unfortunately, we do not always know the indexes for those groups.

That is, we know our data contains  different groups, but we actually
do not know which observations belong to which groups.

Solution: introduce a latent variable  representing the group/cluster
indicator for each observation , so that each .

This is a form of data augmentation, but we will define that properly
later.

p[Y |θ] ≠
n

∏
i=1

D

∏
d=1

θ
1[yi=d]

j

K

zi
i zi ∈ {1, … ,K}
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FINITE MIXTURE OF MULTINOMIALS

Given the cluster indicator  for observation , write

, and

.

Then, the marginal probabilities we care about will be

which is a finite mixture of multinomials, with the weights given by .

zi i

Pr(yi = d|zi) = ψzi,d ≡
D

∏
d=1

ψ
1[yi=d|zi]

zi,d

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]

k

θd = Pr(yi = d)

=
K

∑
k=1

Pr(yi = d|zi = k) ⋅ Pr(zi = k)

=
K

∑
k=1

λk ⋅ ψk,d,

λk
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POSTERIOR INFERENCE

Write

, and

 to be a  matrix of probabilities, where each th
row is the vector of probabilities for cluster .

The observed data likelihood is

which includes products (and not the sums in the mixture pdf), and as
you will see, makes sampling a bit easier.

Next we need priors.

λ = (λ1, … ,λK)

ψ = {ψzi,d} K × D k

k

p [Y = (y1, … , yn)|Z = (z1, … , zn), ψ, λ] =
n

∏
i=1

D

∏
d=1

Pr (yi = d|zi,ψzi,d)

=
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

,
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POSTERIOR INFERENCE

First, for , the vector of cluster probabilities, we can
use a Dirichlet prior. That is,

For , we can assume independent Dirichlet priors for each cluster
vector . That is, for each ,

Finally, from our distribution on the 's, we have

λ = (λ1, … ,λK)

π[λ] = Dirichlet(α1, … ,αK) ∝
K

∏
k=1

λ
αk−1
k

.

ψ
ψk = (ψk,1, … ,ψk,D) k = 1, … ,K

π[ψk] = Dirichlet(a1, … , ad) ∝
D

∏
d=1

ψ
ad−1
k,d .

zi

p [Z = (z1, … , zn)|λ] =
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

.
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POSTERIOR INFERENCE

Note that the unobserved variables and parameters are 
, , and .

So, the joint posterior is

Z = (z1, … , zn)
ψ λ

π (Z, ψ, λ|Y ) ∝ p [Y |Z, ψ, λ] ⋅ p(Z|ψ, λ) ⋅ π(ψ, λ)

∝ [
n

∏
i=1

D

∏
d=1

p (yi = d|zi,ψzi,d)] ⋅ p(Z|λ) ⋅ π(ψ) ⋅ π(λ)

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

)

      × (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

)

      × (
K

∏
k=1

D

∏
d=1

ψ
ad−1
k,d )

      × (
K

∏
k=1

λ
αk−1
k

) .
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POSTERIOR INFERENCE

First, we need to sample the 's, one at a time, from their full
conditionals.

For , sample  from a categorical
distribution (multinomial distribution with sample size one) with
probabilities

zi

i = 1, … ,n zi ∈ {1, … ,K}

Pr[zi = k| …] = Pr[zi = k|yi, ψk,λk]

=

=

= .

Pr[yi, zi = k|ψk,λk]

K

∑
l=1

Pr[yi, zi = l|ψl,λl]

Pr[yi|zi = k, ψk] ⋅ Pr[zi = k,λk]

K

∑
l=1

Pr[yi|zi = l, ψl] ⋅ Pr[zi = l,λl]

ψk,d ⋅ λk

K

∑
l=1

ψl,d ⋅ λl
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POSTERIOR INFERENCE

Next, sample each cluster vector  from

where , the number of individuals in cluster  that

are assigned to category  of the levels of .

ψk = (ψk,1, … ,ψk,D)

π[ψk| …] ∝ π (Z, ψ, λ|Y )

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

) ⋅ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

D

∏
d=1

ψ
ad−1
k,d ) ⋅ (

K

∏
k=1

λ
αk−1
k

)

∝ (
D

∏
d=1

ψ
nk,d

k,d ) ⋅ (
D

∏
d=1

ψ
ad−1
k,d )

= (
D

∏
d=1

ψ
ad+nk,d−1
k,d )

≡ Dirichlet (a1 + nk,1, … , aD + nk,D) .

nk,d = ∑
i:zi=k

1[yi = d] k

d y
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POSTERIOR INFERENCE

Finally, sample , the vector of cluster probabilities
from

where , the number of individuals assigned to cluster 

.

λ = (λ1, … ,λK)

π[λ| …] ∝ π (Z, ψ, λ|Y )

∝ (
n

∏
i=1

D

∏
d=1

ψ
1[yi=d|zi]
zi,d

) ⋅ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

D

∏
d=1

ψ
ad−1
k,d ) ⋅ (

K

∏
k=1

λ
αk−1
k

)

∝ (
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

) ⋅ (
K

∏
k=1

λ
αk−1
k

)

∝ (
K

∏
k=1

λ
nk

k
) ⋅ (

K

∏
k=1

λ
αk−1
k

)

∝ (
K

∏
k=1

λ
αk+nk−1
k

)

≡ Dirichlet (α1 + n1, … ,αK + nK) ,

nk =
n

∑
i=1

1[zi = k]

k
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WHAT'S NEXT?
MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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