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FINITE MIXTURE OF UNIVARIATE NORMAL

(RECAP)
For a location-scale mixture of univariate normals, we can specify

, and

.

Priors:

,

, for each , and

, for each .

yi|zi ∼ N (μzi ,σ
2
zi)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]

k

π[λ] = Dirichlet(a1, … , aK)

μk ∼ N (μ0, γ2
0 ) k = 1, … ,K

σ2
k

∼ IG( , )
ν0

2

ν0σ
2
0

2
k = 1, … ,K
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FINITE MIXTURE OF MULTIVARIATE NORMALS

It is relatively easy to extend this to the multivariate case.

As with the univariate case, given a sufficiently large number of mixture
components, a scale-location multivariate normal mixture model can be
used to approximate any multivariate density.

We have

Or equivalently,

yi

iid
∼

K

∑
k=1

λk ⋅ Np(μk, Σk)

yi|zi, μzi , Σzi ∼ Np(μzi , Σzi)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]

k
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POSTERIOR INFERENCE

We can then specify priors as

We can also just use the conjugate option for  to avoid
specifying , so that we have

Gibbs sampler for both options follow directly from what we have
covered so far.

π(μk) = Np (μ0, Λ0)     for k = 1, … ,K;

π(Σk) = IWp (ν0,S0)     for k = 1, … ,K;

π[λ] = Dirichlet(a1, … , aK).

π(μk, Σk)
Λ0

π(μk, Σk) = π(μk|Σk) ⋅ π(Σk)

= Np(μ0, Σk) ⋅ IWp (ν0,S0)     for k = 1, … ,K;

π[λ] = Dirichlet(a1, … , aK).

1

κ0

4 / 8



LABEL SWITCHING AGAIN

To avoid label switching when fitting the model, we can constrain the
order of the 's.

Here are three of many approaches:

1. Constrain the prior on the 's to be

which does not always seem reasonable.

2. Relax option 1 above to only the first component of the mean vectors

3. Try an ad-hoc fix. After sampling the 's, rearrange the labels to
satisfy  and reassign the labels on 

accordingly.

μk

μk

μk|Σk ∼ Np(μ0, Σk)   μk−1 < μk < μk+1,
1

κ0

μk|Σk ∼ Np(μ0, Σk)   μ1,k−1 < μ1,k < μ1,k+1.
1

κ0

μk

μ1,k−1 < μ1,k < μ1,k+1 Σk
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DP MIXTURE OF NORMALS (TEASER)
To avoid setting  apriori, we can extend this finite mixture of normals
to a Dirichlet process (DP) mixture of normals.

The first level of the model remains the same. That is,

K

yi|zi, μzi , Σzi ∼ Np(μzi , Σzi)    for each i;

π(μk, Σk) = π(μk|Σk) ⋅ π(Σk)

= Np(μ, Σk) ⋅ IWp (ν0,S0)     for each k.
1

κ0
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DP MIXTURE OF NORMALS (TEASER)
For the prior on , use the following stick breaking
representation of the Dirichlet process.

As an approximation, use  with 

 set to be as large as possible!

This specification forces the model to only use as many components as
needed, and usually, no more. Also, the Gibbs sampler is relatively
straightforward.

Other details are beyond the scope of this course, but I am happy to
provide resources for those interested!

λ = (λ1, … ,λK)

P(zi = k) = λk;

λk = Vk∏
l<k

(1 − Vl)  for  k = 1, … , ∞;

Vk
iid
∼ Beta(1,α);

α ∼ Gamma(a, b).

λk = Vk ∏
l<k

(1 − Vl)  for  k = 1, … ,K⋆

K⋆
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WHAT'S NEXT?
WELL.........NOTHING!

YOU MADE IT TO THE END OF THIS COURSE.

HOPE YOU ENJOYED THE COURSE AND THAT YOU HAVE

LEARNED A LOT ABOUT BAYESIAN INFERENCE.
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